

About this eBook
While ePUB is an open standard widely employed for the publication of electronic books,
support and features may vary from one device to another. Every effort has been made to
ensure that this book will display faithfully on all devices, but it may be necessary to adjust the
settings of your particular device for optimum readability.
There are many examples of code employed throughout this book. Due to the flowing nature of
text in the ePUB format, this code, which is written line by line, may not always display
correctly. For example, comments that begin with // may overflow to the next line. If you are
trying to recreate the code that you see in the eBook and discover that it is not working as
expected, ensure that you are following the correct formatting procedures as outlined in this
eBook and in the PEP 8 Style Guide for Python Code.

https://peps.python.org/pep-0008/

Python Essentials 1
by

The OpenEDG Python Institute

Open Education and Development Group
1013 Centre Road, Suite 405
Wilmington, DE
19805, United States

First published in the USA in 2023 by the Open Education and Development Group

Copyright © 2023 Open Education and Development Group

ISBN: 979-8-9877622-0-2

All rights reserved. This book may not be copied or reproduced, in whole or in part, without the
express written permission of the Open Education and Development Group. While the authors
and publisher have taken every precaution in the preparation of this book, they assume no
responsibility for any errors or omissions. Furthermore, authors and publisher assume no
liability for any damages that result from the use of the information contained within this book.

Image credits
Portrait of Guido Van Rossum at the Dropbox headquarters in 2014
CC BY-SA 4.0, Photograph by Daniel Stroud.

Cover Design
Konrad Papka

Trademarks & Disclaimer
Every effort has been made by the publisher to provide information that is accurate. Any terms
in this book that are known trademarks have been capitalized. The Open Education and
Development Group makes no claims to the accuracy of such trademarks.
The Open Education and Development Group and its subsidiaries, including the OpenEDG
Python Institute, is an independent organization with no affiliated links to any other
organization, including the Python Software Foundation.
No warranty of fitness is implied as to the accuracy of the information contained within this
book, although every effort has been made to ensure it is as accurate as possible. Neither the
authors nor publisher assume liability for or responsibility to any person or entity that suffers
loss or damage as result of the use of the information contained herein.
All the code examples in the book have been tested on Python 3.4, 3.6, 3.7, 3.8, and 3.9, and
should work with any subsequent versions of Python 3.x.

Bulk purchase and custom book design
This book may be purchased in bulk in either ePUB or PDF format. Additionally, it may be
possible to customize the layout of the book to suit your needs. To discuss these options, email
services@openedg.org.

CONTENTS
WELCOME TO PYTHON ESSENTIALS 1
Learn Python – the language of today and tomorrow

INTRODUCTION
About the course
Syllabus
Prepare for the PCEP-30-0x exam

MODULE 1: INTRODUCTION TO PYTHON AND COMPUTER PROGRAMMING
SECTION 1.1 – INTRODUCTION TO PROGRAMMING
How does a computer program work?
Compilation vs. Interpretation – Advantages and Disadvantages
SECTION 1.2 – INTRODUCTION TO PYTHON
Python – a tool, not a reptile
Who created Python?
A hobby programming project
There is more than one Python
SECTION 1.3 – DOWNLOADING AND INSTALLING PYTHON
Begin your Python journey

MODULE 2: PYTHON DATA TYPES, VARIABLES, OPERATORS, AND BASIC I/O
OPERATIONS
SECTION 2.1 – THE "HELLO, WORLD!" PROGRAM
2.1.1 Your very first program
2.1.2 The print() function
2.1.3 Function arguments
2.1.4 Function invocation
LAB 1 Working with the print() function
2.1.5 The print() function and its effect, arguments, and values returned
2.1.6 Instructions
2.1.7 Python escape and newline characters
2.1.8 Using multiple arguments
2.1.9 Positional arguments
2.1.10 Keyword arguments
LAB 2 The print() function and its arguments
LAB 3 Formatting the output
2.1 SECTION SUMMARY
2.1 SECTION QUIZ
SECTION 2.2 – PYTHON LITERALS
2.2.1 Literals – the data in itself
2.2.2 Integers
2.2.3 Floats
2.2.4 Strings
2.2.5 Boolean values
LAB 4 Python literals – strings

2.2 SECTION SUMMARY
2.2 SECTION QUIZ
SECTION 2.3 – OPERATORS: DATA MANIPULATION TOOLS
2.3.1 Python as a calculator
2.3.2 Basic operators
2.3.3 Operators and their priorities
2.3 SECTION SUMMARY
2.3 SECTION QUIZ
SECTION 2.4 – VARIABLES
2.4.1 Variables – data-shaped boxes
2.4.2 Variable names
2.4.3 How to create a variable
2.4.4 How to use a variable
2.4.5 How to assign a new value to an already existing variable
2.4.6 Solving simple mathematical problems
LAB 5 Variables
2.4.7 Shortcut operators
LAB 6 Variables ‒ a simple converter
LAB 7 Operators and expressions
2.4 SECTION SUMMARY
2.4 SECTION QUIZ
SECTION 2.5 – COMMENTS
2.5.1 Comments – why, when, and how?
2.5.2 Marking fragments of code
LAB 8 Comments
2.5 SECTION SUMMARY
2.5 SECTION QUIZ
SECTION 2.6 – INTERACTION WITH THE USER
2.6.1 The input() function
2.6.2 The input() function with an argument
2.6.3 The result of the input() function
2.6.4 The input() function – prohibited operations
2.6.5 Type casting (type conversions)
2.6.6 More about input() and type casting
2.6.7 String operators
2.6.8 Type conversions once again
LAB 9 Simple input and output
LAB 10 Operators and expressions
LAB 11 Operators and expressions 2
2.6 SECTION SUMMARY
2.6 SECTION QUIZ

MODULE 3: BOOLEAN VALUES, CONDITIONAL EXECUTION, LOOPS, LISTS
AND LIST PROCESSING, LOGICAL AND BITWISE OPERATIONS
SECTION 3.1 – MAKING DECISIONS IN PYTHON
3.1.1 Questions and answers

3.1.2 Comparison: equality operator
3.1.3 Exercises
3.1.4 Operators
3.1.5 Making use of the answers
LAB 12 Variables ‒ Questions and answers
3.1.6 Conditions and conditional execution
3.1.7 Analyzing code samples
3.1.8 Pseudocode and introduction to loops
LAB 13 Comparison operators and conditional execution
LAB 14 Essentials of the if-else statement
LAB 15 Essentials of the if-elif-else statement
3.1 SECTION SUMMARY
3.1 SECTION QUIZ
SECTION 3.2 – LOOPS IN PYTHON
3.2.1 Looping your code with while
3.2.2 An infinite loop
3.2.3 The while loop: more examples
LAB 16 Guess the secret number
3.2.4 Looping your code with for
3.2.5 More about the for loop and the range() function with three arguments
LAB 17 Essentials of the for loop – counting mississippily
3.2.5 The break and continue statements
LAB 18 The break statement – Stuck in a loop
LAB 19 The continue statement – the Ugly Vowel Eater
LAB 20 The continue statement – the Pretty Vowel Eater
3.2.6 The while loop and the else branch
3.2.7 The for loop and the else branch
LAB 21 Essentials of the while loop
LAB 22 Collatz's hypothesis
3.2 SECTION SUMMARY
3.2 SECTION QUIZ
SECTION 3.3 – LOGIC AND BIT OPERATIONS IN PYTHON
3.3.1 Computer logic
3.3.2 Logical expressions
3.3.3 Logical values vs. single bits
3.3.4 Bitwise operators
3.3.5 How do we deal with single bits?
3.3.6 Binary left shift and binary right shift
3.3 SECTION SUMMARY
3.3 SECTION QUIZ
SECTION 3.4 – LISTS
3.4.1 Why do we need lists?
3.4.2 Indexing lists
3.4.3 Accessing list content
3.4.4 Removing elements from a list
3.4.5 Negative indices are legal
LAB 23 The basics of lists

3.4.6 Functions vs. methods
3.4.7 Adding elements to a list: append() and insert()
3.4.8 Making use of lists
3.4.9 Lists in action
LAB 24 The basics of lists ‒ the Beatles
3.4 SECTION SUMMARY
3.4 SECTION QUIZ
SECTION 3.5 – SORTING SIMPLE LISTS: THE BUBBLE SORT ALGORITHM
3.5.1 The bubble sort
3.5.2 Sorting a list
3.5.3 The bubble sort – interactive version
3.5 SECTION SUMMARY
3.5 SECTION QUIZ
SECTION 3.6 – OPERATIONS ON LISTS
3.6.1 The inner life of lists
3.6.2 Powerful slices
3.6.3 Slices – negative indices
3.6.4 The in and not in operators
3.6.5 Lists – some simple programs
LAB 25 Operating with lists ‒ basics
3.6 SECTION SUMMARY
3.6 SECTION QUIZ
SECTION 3.7 – LISTS IN ADVANCED APPLICATIONS
3.7.1 Lists in lists
3.7.2 Two-dimensional arrays
3.7.3 Multidimensional nature of lists: advanced applications
3.7 SECTION SUMMARY

MODULE 4: FUNCTIONS, TUPLES, DICTIONARIES, EXCEPTIONS, AND DATA
PROCESSING
SECTION 4.1 – FUNCTIONS
4.1.1 Why do we need functions?
4.1.2 Decomposition
4.1.3 Where do functions come from?
4.1.4 Your first function
4.1.5 How functions work
4.1 SECTION SUMMARY
4.1 SECTION QUIZ
SECTION 4.2 – HOW FUNCTIONS COMMUNICATE WITH THEIR
ENVIRONMENT
4.2.1 Parameterized functions
4.2.2 Positional parameter passing
4.2.3 Keyword argument passing
4.2.4 Mixing positional and keyword arguments
4.2.5 Parametrized functions – more details
4.2 SECTION SUMMARY

4.2 SECTION QUIZ
SECTION 4.3 – RETURNING A RESULT FROM A FUNCTION
4.3.1 Effects and results: the return instruction
4.3.2 A few words about None
4.3.3 Effects and results: lists and functions
LAB 26 A leap year: writing your own functions
LAB 27 How many days: writing and using your own functions
LAB 28 Day of the year: writing and using your own functions
LAB 29 Prime numbers ‒ how to find them
LAB 30 Converting fuel consumption
4.3 SECTION SUMMARY
4.3 SECTION QUIZ
SECTION 4.4 – SCOPES IN PYTHON
4.4.1 Functions and scopes
4.4.2 Functions and scopes: the global keyword
4.4.3 How the function interacts with its arguments
4.4 SECTION SUMMARY
4.4 SECTION QUIZ
SECTION 4.5 – CREATING MULTI-PARAMETER FUNCTIONS
4.5.1 Sample functions: Evaluating the BMI
4.5.2 Sample functions: Triangles
4.5.3 Sample functions: Factorials
4.5.4 Fibonacci numbers
4.5.5 Recursion
4.5 SECTION SUMMARY
4.5 SECTION QUIZ
SECTION 4.6 – TUPLES AND DICTIONARIES
4.6.1 Sequence types and mutability
4.6.2 Tuples
4.6.3 Dictionaries
4.6.4 Dictionary methods and functions
4.6.5 Tuples and dictionaries can work together
4.6 SECTION SUMMARY
4.6 SECTION QUIZ
SECTION 4.7 – EXCEPTIONS
4.7.1 Errors – the developer's daily bread
4.7.2 When data is not what it should be
4.7.3 The try-except branch
4.7.4 The exception proves the rule
4.7.5 How to deal with more than one exception
4.7.6 The default exception and how to use it
4.7.7 Some useful exceptions
4.7.8 Why you can't avoid testing your code
4.7.9 When Python closes its eyes
4.7.10 Tests, testing, and testers
4.7.11 print debugging

4.7.12 Some useful tips
4.7.13 Unit testing – a higher level of coding
4.7 SECTION SUMMARY
4.7 SECTION QUIZ

APPENDICES
APPENDIX A: LAB HINTS
APPENDIX B: LAB SAMPLE SOLUTIONS
APPENDIX C: ANSWERS
APPENDIX D: PCEP EXAM SYLLABUS

WELCOME TO PYTHON ESSENTIALS 1

Learn Python – the language of today and tomorrow
This course is the first in a two-course Python Essentials series. It covers everything you
need to know to start designing, writing, running, debugging, and improving Python programs
at the foundational level. It also fully prepares you for the PCEP – Certified Entry-Level Python
Programmer certification exam from the Python Institute.

https://pythoninstitute.org/certification/pcep-certification-entry-level/

INTRODUCTION
Python is one of the fastest growing programming languages in the world, and is used in
almost every sector and industry, from gaming, to medicine, to nuclear physics. It is essential
for any would-be programmer to have at least a foundational knowledge of Python.
Luckily, Python is also one of the easiest programming languages to learn. With its focus on
real-world words and syntax, a beginner learner of Python can start writing simple programs
within minutes

Goals of this book
This book is designed to teach you the basics of Python programming, even if you have zero
programming experience
Additionally, it prepares you to take the PCEP Python Certified Entry-Level Python
Programmer exam, which can be taken through the OpenEDG testing platform TestNow™.
At the end of this book, you will find the complete syllabus for the PCEP Python Certified Entry-
Level Python Programmer exam

Learning Tools
Edube
The material found in this book may also be accessed online at www.edube.org. Here it is
possible to take other courses such as JavaScript Essentials, or C/C++ Essentials, and
progress to the intermediate and advances Python courses. Furthermore, through the Edube
platform, you can purchase exam vouchers and schedule an exam.

Sandbox
The Edube educational platform offers an interactive programming sandbox, where you can try
out the code examples shown in this book. The Sandbox becomes available as soon as you
create an account on Edube.

http://www.edube.org/

About the course
Welcome to Python Essentials 1! This course has been designed and developed by the
OpenEDG Python Institute in partnership with the Cisco Networking Academy.
The course has been created for anyone and everyone who wants to learn Python and
modern programming techniques. It will particularly appeal to:

aspiring programmers and learners interested in learning programming for fun and for
job-related tasks;
learners looking to gain fundamental skills and knowledge for an entry-level job role as
a software developer, data analyst, or tester;
industry professionals wishing to explore technologies that are connected with Python,
or that utilize it as a foundation;
team leaders, product managers, and project managers who want to understand the
terminology and processes in the software development cycle to more effectively
manage and communicate with production and development teams.

During the course you will have access to hands-on practice materials, labs, quizzes,
assessments, and tests to learn how to utilize the skills and knowledge gained from studying
the resources and performing coding tasks, and interact with some real-life programming
challenges and situations.

https://pythoninstitute.org/

Syllabus
In this course you will learn:

the universal concepts of computer programming;
the syntax and semantics of the Python language;
practical skills in resolving typical implementation challenges;
how to use the most important elements of the Python Standard Library;
how to install your runtime environment;
how to design, develop, test, and debug simple Python programs.

The course is divided into four modules:
Module 1
Introduction to Python and computer programming;
Module 2
Data types, variables, basic input-output operations, and basic operators;
Module 3
Boolean values, conditional execution, loops, lists and list processing, logical and bitwise
operations;
Module 4
Functions, tuples, dictionaries, exceptions, and data processing.

Prepare for the PCEP-30-0x exam
Dive into programming, learn Python from scratch, and prepare for the PCEP – Certified
Entry-Level Python Programmer certification
Python Essentials 1 is aligned with the PCEP – Certified Entry-Level Python
Programmer certification, a professional credential that demonstrates the holder's
understanding of the Python language syntax and semantics, as well as their proficiency in
using the most essential elements of the language, tools, and resources to design, develop,
and refactor simple Python programs.
The certification holder knows the syntax of the Python language to a degree that allows them
to work with variables, operators, control flow mechanisms, and functions, as well as
understands the fundamentals of the Python data type system, exception handling,
troubleshooting, debugging, and the runtime environment.

PCEP – Certified Entry-Level Python Programmer certification is an interim step to the PCAP –
Certified Associate in Python Programming certification, and the starting point to launch a
career in software development, Python programming, and related technologies.
Becoming PCEP certified will help you stand out from other candidates and get your foot in
the door.
For more information about the PCEP – Certified Entry-Level Python Programmer certification,
please visit www.PythonInstitute.org.

http://www.pythoninstitute.org/

MODULE 1: INTRODUCTION TO PYTHON AND
COMPUTER PROGRAMMING

SECTION 1.1 – INTRODUCTION TO PROGRAMMING
Hello there, and welcome to Module One! We will start off by learning about some of the
universal concepts of programming, such as instruction list, source file, language elements,
compilation and interpretation. Ready? Let's start!

How does a computer program work?
A program makes a computer usable. Without a program, a computer, even the most powerful
one, is nothing more than an object. Similarly, without a player, a piano is nothing more than a
wooden box.
Computers are able to perform very complex tasks, but this ability is not innate. A computer's
nature is quite different.
It can execute only extremely simple operations. For example, a computer cannot understand
the value of a complicated mathematical function by itself, although this isn't beyond the
realms of possibility in the near future.
Contemporary computers can only evaluate the results of very fundamental operations, like
adding or dividing, but they can do it very fast, and can repeat these actions virtually any
number of times.
Imagine that you want to know the average speed you've reached during a long journey. You
know the distance, you know the time, you need the speed.
Naturally, the computer will be able to compute this, but the computer is not aware of such
things as distance, speed, or time. Therefore, it is necessary to instruct the computer to:

accept a number representing the distance;
accept a number representing the travel time;
divide the former value by the latter and store the result in the memory;
display the result (representing the average speed) in a readable format.

These four simple actions form a program. Of course, these examples are not formalized, and
they are very far from what the computer can understand, but they are good enough to be
translated into a language the computer can accept.
Language is the keyword.

Natural languages vs. programming languages
A language is a means (and a tool) for expressing and recording thoughts. There are many
languages all around us. Some of them require neither speaking nor writing, such as body
language; it's possible to express your deepest feelings very precisely without saying a word.
Another language you use each day is your mother tongue, which you use to manifest your will
and to ponder reality. Computers have their own language, too, called machine language,
which is very rudimentary.
A computer, even the most technically sophisticated, is devoid of even a trace of intelligence.
You could say that it is like a well-trained dog – it responds only to a predetermined set of
known commands.
The commands it recognizes are very simple. We can imagine that the computer responds to
orders like "take that number, divide by another and save the result".
A complete set of known commands is called an instruction list, sometimes abbreviated to IL.
Different types of computers may vary depending on the size of their ILs, and the instructions
could be completely different in different models.
Note: machine languages are developed by humans.

No computer is currently capable of creating a new language. However, that may change soon.
Just as people use a number of very different languages, machines have many different
languages, too. The difference, though, is that human languages developed naturally.
Moreover, they are still evolving, and new words are created every day as old words disappear.
These languages are called natural languages.

What makes a language?
We can say that each language (machine or natural, it doesn't matter) consists of the following
elements:
An alphabet: a set of symbols used to build words of a certain language (e.g. the Latin
alphabet for English, the Cyrillic alphabet for Russian, Kanji for Japanese, and so on)
A lexis: (aka a dictionary) a set of words the language offers its users (e.g. the word
"computer" comes from the English language dictionary, while "cmoptrue" doesn't; the word
"chat" is present both in English and French dictionaries, but their meanings are different)
A syntax: a set of rules (formal or informal, written or felt intuitively) used to determine if a
certain string of words forms a valid sentence (e.g. "I am a python" is a syntactically correct
phrase, while "I a python am" isn't)
Semantics: a set of rules determining if a certain phrase makes sense (e.g. "I ate a doughnut"
makes sense, but "A doughnut ate me" doesn't)

Machine language vs. high-level language
The IL is, in fact, the alphabet of a machine language. This is the simplest and most primary
set of symbols we can use to give commands to a computer. It's the computer's mother
tongue.
Unfortunately, this mother tongue is a far cry from a human mother tongue. We both (
computers and humans) need something else, a common language for computers and
humans, or a bridge between the two different worlds.
We need a language in which humans can write their programs and a language that computers
may use to execute the programs, one that is far more complex than machine language and
yet far simpler than natural language.
Such languages are often called high-level programming languages. They are at least
somewhat similar to natural ones in that they use symbols, words and conventions readable to
humans. These languages enable humans to express commands to computers that are much
more complex than those offered by ILs.
A program written in a high-level programming language is called a source code (in contrast
to the machine code executed by computers). Similarly, the file containing the source code is
called the source file.

Compilation vs. Interpretation
Computer programming is the act of composing the selected programming language's
elements in the order that will cause the desired effect. The effect could be different in every
specific case – it's up to the programmer's imagination, knowledge and experience.
Of course, such a composition has to be correct in many senses:

alphabetically – a program needs to be written in a recognizable script, such as
Roman, Cyrillic, etc.
lexically – each programming language has its dictionary and you need to master it;
thankfully, it's much simpler and smaller than the dictionary of any natural language;
syntactically – each language has its rules and they must be obeyed;
semantically – the program has to make sense.

Unfortunately, a programmer can also make mistakes with each of the above four senses.
Each of them can cause the program to become completely useless.
Let's assume that you've successfully written a program. How do we persuade the computer to
execute it? You have to render your program into machine language. Luckily, the translation
can be done by a computer itself, making the whole process fast and efficient.
There are two different ways of transforming a program from a high-level programming
language into machine language:

Compilation – the source program is translated once (however, this act must be repeated
each time you modify the source code) by getting a file (e.g. an .exe file if the code is intended
to be run under MS Windows) containing the machine code. Now you can distribute the file
worldwide; the program that performs this translation is called a compiler or translator.

Interpretation – you (or any user of the code) can translate the source program each time it
has to be run. The program performing this kind of transformation is called an interpreter, as it
interprets the code every time it is intended to be executed. It also means that you cannot just
distribute the source code as-is, because the end-user also needs the interpreter to execute it.
Due to some very fundamental reasons, a particular high-level programming language is
designed to fall into one of these two categories.
There are very few languages that can be both compiled and interpreted. Usually, a
programming language is projected with this factor in its constructors' minds – will it be
compiled or interpreted?

What does the interpreter do?
Let's assume once more that you have written a program. Now, it exists as a computer file: a
computer program is actually a piece of text, so the source code is usually placed in text files.
Note: it has to be pure text, without any decorations like different fonts, colors, embedded
images or other media. Now you have to invoke the interpreter and let it read your source file.
The interpreter reads the source code in a way that is common in Western culture: from top to
bottom and from left to right. There are some exceptions – they'll be covered later in the
course.
First of all, the interpreter checks if all subsequent lines are correct (using the four aspects
covered earlier).
If the compiler finds an error, it finishes its work immediately. The only result in this case is
an error message.
The interpreter will inform you where the error is located and what caused it. However, these
messages may be misleading, as the interpreter isn't able to follow your exact intentions, and
may detect errors at some distance from their real causes.
For example, if you try to use an entity of an unknown name, it will cause an error, but the error
will be discovered in the place where it tries to use the entity, not where the new entity's name
was introduced.

In other words, the actual reason is usually located a little earlier in the code, for example, in
the place where you had to inform the interpreter that you were going to use the entity of the
name.
If the line looks good, the interpreter tries to execute it (note: each line is usually executed
separately, so the trio "read-check-execute" can be repeated many times – more times than
the actual number of lines in the source file, as some parts of the code may be executed more
than once).
It is also possible that a significant part of the code may be executed successfully before the
interpreter finds an error. This is normal behavior in this execution model.
You may ask now: which is better? The "compiling" model or the "interpreting" model? There is
no obvious answer. If there had been, one of these models would have ceased to exist a long
time ago. Both of them have their advantages and their disadvantages.

Compilation vs. Interpretation – Advantages and
Disadvantages

Compilation

Advantages

The execution of the translated code is usually faster;
Only the user has to have the compiler – the end-user may use the code without it;
The translated code is stored using machine language – as it is very hard to understand
it, your own inventions and programming tricks are likely to remain your secret.

Disdvantages

The compilation itself may be a very time-consuming process – you may not be able to
run your code immediately after making an amendment;
You have to have as many compilers as hardware platforms you want your code to be
run on.

Interpretation
Advantages

You can run the code as soon as you complete it – there are no additional phases of
translation;
The code is stored using programming language, not machine language – this means
that it can be run on computers using different machine languages; you don't compile
your code separately for each different architecture.

Disdvantages

Don't expect interpretation to ramp up your code to high speed – your code will share
the computer's power with the interpreter, so it can't be really fast;
Both you and the end user have to have the interpreter to run your code.

What does this all mean for you?

Python is an interpreted language. This means that it inherits all the described
advantages and disadvantages. Of course, it adds some of its unique features to both
sets.
If you want to program in Python, you'll need the Python interpreter. You won't be able
to run your code without it. Fortunately, Python is free. This is one of its most important
advantages.

Due to historical reasons, languages designed to be utilized in the interpretation manner are
often called scripting languages, while the source programs encoded using them are
called scripts. Okay, let's meet Python.

SECTION 1.2 – INTRODUCTION TO PYTHON
Here, we will learn a little bit about the history of Python, different Python versions and
implementations, and the impact that Python has had on modern-day programming. Let's
begin.

Python – a tool, not a reptile

What is Python?
Python is a widely-used, interpreted, object-oriented, and high-level programming language
with dynamic semantics, used for general-purpose programming.
And while you may know the python as a large snake, the name of the Python programming
language comes from an old BBC television comedy sketch series called Monty Python's
Flying Circus.

At the height of its success, the Monty Python team were performing their sketches to live
audiences across the world, including at the Hollywood Bowl.
Since Monty Python is considered one of the two fundamental nutrients to a programmer (the
other being pizza), Python's creator named the language in honor of the TV show.

Who created Python?
One of the amazing features of Python is the fact that it is actually one person's work. Usually,
new programming languages are developed and published by large companies employing lots
of professionals, and due to copyright rules, it is very hard to name any of the people involved
in the project. Python is an exception.
There are not many languages whose authors are known by name. Python was created by
Guido van Rossum, born in 1956 in Haarlem, the Netherlands. Of course, Guido van Rossum
did not develop and evolve all the Python components himself.
The speed with which Python has spread around the world is a result of the continuous work of
thousands (very often anonymous) programmers, testers, users (many of them aren't IT
specialists) and enthusiasts, but it must be said that the very first idea (the seed from which
Python sprouted) came to one head – Guido's.

https://en.wikipedia.org/wiki/Guido_van_Rossum

A hobby programming project
The circumstances in which Python was created are a bit puzzling. According to Guido van
Rossum:

In December 1989, I was looking for a "hobby" programming project that would keep
me occupied during the week around Christmas. My office (...) would be closed, but I
had a home computer, and not much else on my hands. I decided to write an
interpreter for the new scripting language I had been thinking about lately: a
descendant of ABC that would appeal to Unix/C hackers. I chose Python as a
working title for the project, being in a slightly irreverent mood (and a big fan of Monty
Python's Flying Circus).

— Guido van Rossum

Python goals
In 1999, Guido van Rossum defined his goals for Python:

an easy and intuitive language just as powerful as those of the major competitors;
open source, so anyone can contribute to its development;
code that is as understandable as plain English;
suitable for everyday tasks, allowing for short development times.

About 20 years later, it is clear that all these intentions have been fulfilled. Some sources say
that Python is the most popular programming language in the world, while others claim it's the
second or the third.
Either way, it still occupies a high rank in the top ten of the PYPL PopularitY of Programming
Language and the TIOBE Programming Community Index.
Python isn't a young language anymore. It is mature and trustworthy. It's not a one-hit
wonder. It's a bright star in the programming firmament, and time spent learning Python is a
very good investment.

What makes Python so special?

Why Python?
How does it happen that programmers, young and old, experienced and novice, want to use it?
How did it happen that large companies adopted Python and implemented their flagship
products using it?
There are many reasons – we've listed some of them already, but let's enumerate them again
in a more practical manner:

it's easy to learn – the time needed to learn Python is shorter than for many other
languages; this means that it's possible to start the actual programming faster;
it's easy to teach – the teaching workload is smaller than that needed by other
languages; this means that the teacher can put more emphasis on general (language-
independent) programming techniques, not wasting energy on exotic tricks, strange
exceptions and incomprehensible rules;

http://pypl.github.io/PYPL.html
https://www.tiobe.com/tiobe-index/

it's easy to use for writing new software – it's often possible to write code faster when
using Python;
it's easy to understand – it's also often easier to understand someone else's code
faster if it is written in Python;
it's easy to obtain, install and deploy – Python is free, open and multiplatform; not all
languages can boast that.

Python rivals
Python has two direct competitors, with comparable properties and predispositions. These are:

Perl – a scripting language originally authored by Larry Wall;
Ruby – a scripting language originally authored by Yukihiro Matsumoto.

The former is more traditional and more conservative than Python, and resembles some of the
old languages derived from the classic C programming language.
In contrast, the latter is more innovative and more full of fresh ideas than Python. Python itself
lies somewhere between these two creations.
The Internet is full of forums with infinite discussions on the superiority of one of these three
over the others, should you wish to learn more about each of them.

Where can we see Python in action?
We see it every day and almost everywhere. It's used extensively to implement
complex Internet services like search engines, cloud storage and tools, social media and so
on. Whenever you use any of these services, you are actually very close to Python, although
you wouldn't know it.
Many developing tools are implemented in Python. More and more everyday-use
applications are being written in Python. Lots of scientists have abandoned expensive
proprietary tools and switched to Python. Lots of IT project testers have started using Python
to carry out repeatable test procedures. The list is long.

Why not Python?
Despite Python's growing popularity, there are still some niches where Python is absent, or is
rarely seen:

low-level programming (sometimes called "close to metal" programming): if you want
to implement an extremely effective driver or graphical engine, you wouldn't use Python;
applications for mobile devices: although this territory is still waiting to be conquered
by Python, it will most likely happen someday.

There is more than one Python

Python 2 vs. Python 3
There are two main kinds of Python, called Python 2 and Python 3.
Python 2 is an older version of the original Python. Its development has since been
intentionally stalled, although that doesn't mean that there are no updates to it. On the contrary,
the updates are issued on a regular basis, but they are not intended to modify the language in
any significant way. They rather fix any freshly discovered bugs and security holes. Python 2's
development path has reached a dead end already, but Python 2 itself is still very much alive.
Python 3 is the newer (or to be more precise, the current) version of the language. It's
going through its own evolutionary path, creating its own standards and habits.
These two versions of Python aren't compatible with each other. Python 2 scripts won't run in a
Python 3 environment and vice versa, so if you want the old Python 2 code to be run by a
Python 3 interpreter, the only possible solution is to rewrite it, not from scratch, of course, as
large parts of the code may remain untouched, but you do have to revise all the code to find all
possible incompatibilities. Unfortunately, this process cannot be fully automatized.
It's too hard, too time-consuming, too expensive, and too risky to migrate an old Python 2
application to a new platform, and it's even possible that rewriting the code will introduce new
bugs into it. It's easier, and more sensible, to leave these systems alone and to improve the
existing interpreter, instead of trying to work inside the already functioning source code.
Python 3 isn't just a better version of Python 2 – it is a completely different language, although
it's very similar to its predecessor. When you look at them from a distance, they appear to be
the same, but when you look closely, though, you notice a lot of differences.
If you're modifying an old existing Python solution, then it's highly likely that it was coded in
Python 2. This is the reason why Python 2 is still in use. There are too many existing Python 2
applications to discard it altogether.
NOTE
If you're going to start a new Python project, you should use Python 3, and this is the
version of Python that will be used during this course.
It is important to remember that there may be smaller or bigger differences between
subsequent Python 3 releases (e.g. Python 3.6 introduced ordered dictionary keys by default
under the CPython implementation) – the good news, though, is that all the newer versions of
Python 3 are backward compatible with the previous versions of Python 3. Whenever
meaningful and important, we will always try to highlight those differences in the course.
All the code samples you will find during the course have been tested against Python 3.4,
Python 3.6, Python 3.7, Python 3.8, and Python 3.9.

Python implementations
In addition to Python 2 and Python 3, there is more than one version of each.
Following the Python wiki page, an implementation of Python refers to "a program or
environment, which provides support for the execution of programs written in the Python
language, as represented by the CPython reference implementation."
The traditional implementation of Python, called CPython, is Guido van Rossum's reference
version of the Python computing language, and it's most often called just "Python". When you

https://wiki.python.org/moin/PythonImplementations

hear the name CPython, it's most probably used to distinguish it from other, non-traditional,
alternative implementations.
But, first things first. There are the Pythons which are maintained by the people gathered
around the PSF (Python Software Foundation), a community that aims to develop, improve,
expand, and popularize Python and its environment. The PSF's president is Guido von
Rossum himself, and for this reason, these Pythons are called canonical. They are also
considered to be reference Pythons, as any other implementation of the language should
follow all standards established by the PSF.
Guido van Rossum used the "C" programming language to implement the very first version of
his language and this decision is still in force. All Pythons coming from the PSF are written in
the "C" language. There are many reasons for this approach. One of them (probably the most
important) is that thanks to it, Python may be easily ported and migrated to all platforms with
the ability to compile and run "C" language programs (virtually all platforms have this feature,
which opens up many expansion opportunities for Python).
This is why the PSF implementation is often referred to as CPython. This is the most
influential Python among all the Pythons in the world.
This component is a flipcard comprised of flippable cards containing display image. Select the
front face image to flip to the back face of these card to display associated text.

Cython is one of a possible number of solutions to the most painful of Python's traits – the lack
of efficiency. Large and complex mathematical calculations may be easily coded in Python
(much easier than in "C" or any other traditional language), but the resulting code execution
may be extremely time-consuming.
How are these two contradictions reconciled? One solution is to write your mathematical ideas
using Python, and when you're absolutely sure that your code is correct and produces valid
results, you can translate it into "C". Certainly, "C" will run much faster than pure Python.

https://www.python.org/psf-landing/

This is what Cython is intended to do – to automatically translate the Python code (clean and
clear, but not too swift) into "C" code (complicated and talkative, but agile).
Another version of Python is called Jython.
"J" is for "Java". Imagine a Python written in Java instead of C. This is useful, for example, if
you develop large and complex systems written entirely in Java and want to add some Python
flexibility to them. The traditional CPython may be difficult to integrate into such an
environment, as C and Java live in completely different worlds and don't share many common
ideas.
Jython can communicate with existing Java infrastructure more effectively. This is why some
projects find it useful and necessary.
Note: the current Jython implementation follows Python 2 standards. There is no Jython
conforming to Python 3, so far.

The PyPy logo is a rebus. Can you solve it? It means: a Python within a Python. In other
words, it represents a Python environment written in Python-like language
named RPython (Restricted Python). It is actually a subset of Python.
The source code of PyPy is not run in the interpretation manner, but is instead translated into
the C programming language and then executed separately.

This is useful because if you want to test any new feature that may be (but doesn't have to be)
introduced into mainstream Python implementation, it's easier to check it with PyPy than with
CPython. This is why PyPy is rather a tool for people developing Python than for the rest of the
users.
This doesn't make PyPy any less important or less serious than CPython, of course.
In addition, PyPy is compatible with the Python 3 language.
There are many more different Pythons in the world. You'll find them if you look, but this
course will focus on CPython.

MicroPython is an efficient open source software implementation of Python 3 that is optimized
to run on microcontrollers. It includes a small subset of the Python Standard Library, but it is
largely packed with a large number of features such as interactive prompt or arbitrary precision
integers, as well as modules that give the programmer access to low-level hardware.
Originally created by Damien George, an Australian programmer, who in the year 2013 ran a
successful campaign on Kickstarter, and released the first MicroPython version with an
STM32F4-powered development board called pyboard.
In 2017, MicroPython was used to create CircuitPython, another one open source
programming language that runs on the microcontroller hardware, which is a derivative of the
MicroPython language.

SECTION 1.3 – DOWNLOADING AND INSTALLING PYTHON
Here we will talk about the ways of obtaining, installing, and configuring Python on your local
computer. This section is optional, as throughout the course you will be able to launch, test,
and experiment with all your Python programs in Edube Interactive™, the programming
environment that we have integrated with the learning platform and these study resources.
Still, if you can download and install Python on your local machine, we strongly recommend it.

Begin your Python journey

How to get Python and how to use it
There are several ways to get your own copy of Python 3, depending on the operating system
you use.
Linux users most probably have Python already installed – this is the most likely scenario,
as Python's infrastructure is intensively used by many Linux OS components.
For example, some distributors may couple their specific tools together with the system and
many of these tools, like package managers, are often written in Python. Some parts of
graphical environments available in the Linux world may use Python, too.
If you're a Linux user, open the terminal/console, and type:
python3

at the shell prompt, press Enter and wait. If you see something like this:

then you don't have to do anything else.
If Python 3 is absent, then refer to your Linux documentation in order to find out how to use
your package manager to download and install a new package – the one you need is
named python3 or its name begins with that.
All non-Linux users can download a copy at https://www.python.org/downloads/.

How to download, install, and configure Python
Because the browser tells the site you've entered the OS you use, the only step you have to
take is to click the appropriate Python version you want.
In this case, select Python 3. The site always offers you the latest version of it.
If you're a Windows user, start the downloaded .exe file and follow all the steps.
Leave the default settings the installer suggests for now, with one exception – look at the
checkbox named Add Python 3.x to PATH and check it.

https://www.python.org/downloads/

This will make things easier.
If you're a macOS user, a version of Python 2 may already have been preinstalled on your
computer, but since we will be working with Python 3, you will still need to download and install
the relevant .pkg file from the Python site.

Starting your work with Python
Now that you have Python 3 installed, it's time to check if it works and make the very first use
of it.
This will be a very simple procedure, but it should be enough to convince you that the Python
environment is complete and functional.
There are many ways of utilizing Python, especially if you're going to be a Python developer.
To start your work, you need the following tools:

an editor which will support you in writing the code (it should have some special
features, not available in simple tools); this dedicated editor will give you more than the
standard OS equipment;
a console in which you can launch your newly written code and stop it forcibly when it
gets out of control;
a tool named a debugger, able to launch your code step-by-step, which will allow you to
inspect it at each moment of execution.

Besides its many useful components, the Python 3 standard installation contains a very simple
but extremely useful application named IDLE.
IDLE is an acronym: Integrated Development and Learning Environment.
Navigate through your OS menus, find IDLE somewhere under Python 3.x and launch it. This
is what you should see:

Your very first program before your first program...
It is now time to write and run your first Python 3 program. It will be very simple, for now.
The first step is to create a new source file and fill it with code. Click File in the IDLE menu and
choose New file.

As you can see, IDLE opens a new window for you. You can use it to write and amend your
code.
This is the editor window. Its only purpose is to be a workplace in which your source code is
treated. Do not confuse the editor window with the shell window. They perform different
functions.
The editor window is currently untitled, but it's good practice to start work by naming the source
file.
Click File (in the new window), then click Save as..., select a folder for the new file (the desktop
is a good place for your first programming attempts) and chose a name for the new file.

Note: don't set any extension for the file name you are going to use. Python needs its files to
have the .py extension, so you should rely on the dialog window's defaults. Using the standard
.py extension enables the OS to properly open these files.
Now put just one line into your newly opened and named editor window.
The line looks like this:
print("Hisssssss...")

You can use the clipboard to copy the text into the file.
We're not going to explain the meaning of the program right now. You'll find a detailed
discussion in the next chapter.
Take a closer look at the quotation marks. These are the simplest form of quotation marks
(neutral, straight, dumb, etc.) commonly used in source files. Do not try to use typographic
quotes (curved, curly, smart, etc.), used by advanced text processors, as Python doesn't
accept them.

Save the file (File -> Save) and run the program (Run -> Run Module).
If everything goes okay and there are no mistakes in the code, the console window will show
you the effects caused by running the program.
In this case, the program hisses.
Try to run it once again. And once more.
Now close both windows now and return to the desktop.

How to spoil and fix your code
Now start IDLE again.

Click File, Open, point to the file you saved previously and let IDLE read it in.
Try to run it again by pressing F5 when the editor window is active.

As you can see, IDLE is able to save your code and retrieve it when you need it again.
IDLE contains one additional and helpful feature.

First, remove the closing parenthesis.
Then enter the parenthesis again.

Your code should look like the one down here:
Hisssssss...

Every time you put the closing parenthesis in your program, IDLE will show the part of the text
limited with a pair of corresponding parentheses. This helps you to remember to place them in
pairs.

Remove the closing parenthesis again. The code becomes erroneous. It contains a syntax
error now. IDLE should not let you run it.

Try to run the program again. IDLE will remind you to save the modified file. Follow the
instructions.
Watch all the windows carefully.
A new window appears – it says that the interpreter has encountered an EOF (end-of-file)
although (in its opinion) the code should contain some more text.
The editor window shows clearly where it happened.

Fix the code now. It should look like this:
print("Hisssssss...")

Run it to see if it "hisses" again.
Let's spoil the code one more time. Remove one letter from the word print. Run the code by
pressing F5. What happens now? As you can see, Python is not able to recognize the
instruction.

You may have noticed that the error message generated for the previous error is quite different
from the first one.

This is because the nature of the error is different and the error is discovered at a different
stage of interpretation.
The editor window will not provide any useful information regarding the error, but the console
windows might.
The message (in red) shows (in the subsequent lines):

the traceback (which is the path that the code traverses through different parts of the
program – you can ignore it for now, as it is empty in such a simple code);
the location of the error (the name of the file containing the error, line number and
module name); note: the number may be misleading, as Python usually shows the place
where it first notices the effects of the error, not necessarily the error itself;
the content of the erroneous line; note: IDLE's editor window doesn't show line
numbers, but it displays the current cursor location at the bottom-right corner; use it to
locate the erroneous line in a long source code;
the name of the error and a short explanation.

Experiment with creating new files and running your code. Try to output a different message to
the screen, e.g. roar!, meow, or even maybe an oink!. Try to spoil and fix your code – see
what happens.

MODULE 2: PYTHON DATA TYPES, VARIABLES,
OPERATORS, AND BASIC I/O OPERATIONS

SECTION 2.1 – THE "HELLO, WORLD!" PROGRAM
Welcome to Module two! In the first section, we will learn about the most essential elements of
syntax and semantics of the Python language, and use them to build your very first Python
program – "Hello, World!".

1
2

2.1.1 Your very first program
It's time to start writing some real, working Python code. It'll be very simple for the time
being.
As we're going to show you some fundamental concepts and terms, these snippets of code
won't be all that serious or complex.
Run the following code. If everything goes okay here, you'll see the line of text in the console
window.
Alternatively, launch IDLE, create a new Python source file, fill it with this code, name the file
and save it. Now run it. If everything goes okay, you'll see the text contained within the
quotation marks in the IDLE console window. The code you have run should look familiar. You
saw something very similar when we led you through the setting up of the IDLE environment.

Now we'll spend some time showing and explaining to you what you're actually seeing, and
why it looks like this.
As you can see, this first program consists of the following parts:

the word print;
an opening parenthesis;
a quotation mark;
a line of text: Hello, World!;
another quotation mark;
a closing parenthesis.

Each of these plays a very important role in the code.

print("Hello, world!")

1
2

2.1.2 The print() function
Look at this line of code:

The word print that you can see here is a function name. That doesn't mean that wherever
the word appears it is always a function name. The meaning of the word comes from the
context in which the word has been used.
You've probably encountered the term function many times before, during math classes. You
can probably also list several names of mathematical functions, like sine or log.
Python functions, however, are more flexible, and can contain more content than their
mathematical siblings.
A function (in this context) is a separate part of the computer code able to:

cause some effect (e.g. send text to the terminal, create a file, draw an image, play a
sound, etc.); this is something completely unheard of in the world of mathematics;
evaluate a value (e.g. the square root of a value or the length of a given text)
and return it as the function's result; this is what makes Python functions the relatives
of mathematical concepts.

Moreover, many Python functions can do these two things together.

Where do functions come from?

From Python itself: they may come from Python itself; the print function is one of this
kind; such a function is an added value received together with Python and its
environment (it is built-in); you don't have to do anything special (e.g. ask anyone for
anything) if you want to make use of it;
From modules: they may come from one or more of Python's add-ons named modules;
some of the modules come with Python, others may require separate installation –
whatever the case, they all need to be explicitly connected with your code (we'll show
you how to do that soon);
From your code: you can write them yourself, placing as many functions as you want
and need inside your program to make it simpler, clearer and more elegant.

The name of the function should be significant (the name of the print function is self-evident).
Of course, if you're going to make use of any already existing function, you have no influence
on its name, but when you start writing your own functions, you should consider carefully your
choice of names.

print("Hello, World!")

2.1.3 Function arguments
As we said before, a function may have:

an effect;
a result.

There's also a third, very important, function component ‒ the argument(s).
Mathematical functions usually take one argument. For example, sin(x) takes an x, which is the
measure of an angle.
Python functions, on the other hand, are more versatile. Depending on the individual needs,
they may accept any number of arguments ‒ as many as necessary to perform their tasks.
Note: When we said any number, that includes zero ‒ some Python functions don't need any
argument.
print("Hello, World!")

In spite of the number of needed/provided arguments, Python functions strongly demand the
presence of a pair of parentheses ‒ opening and closing ones, respectively.
If you want to deliver one or more arguments to a function, you place them inside the
parentheses. If you're going to use a function which doesn't take any argument, you still have
to have the parentheses.
Note: to distinguish ordinary words from function names, place a pair of empty
parentheses after their names, even if the corresponding function wants one or more
arguments. This is a standard convention.
The function we're talking about here is print().
Does the print() function in our example have any arguments?
Of course it does, but what are they?

A string as an argument of the print() function
The only argument delivered to the print() function in this example is a string:
print("Hello, World!")

As you can see, the string is delimited with quotes ‒ in fact, the quotes make the string ‒
they cut out a part of the code and assign a different meaning to it.
You can imagine that the quotes say something like: the text between us is not code. It isn't
intended to be executed, and you should take it as is.
Almost anything you put inside the quotes will be taken literally, not as code, but as data. Try to
play with this particular string ‒ modify it, enter some new content, delete some of the existing
content.
There's more than one way to specify a string inside Python's code, but for now, though, this
one is enough.
So far, you have learned about two important parts of the code: the function and the string.
We've talked about them in terms of syntax, but now it's time to discuss them in terms of
semantics.

1
2

2.1.4 Function invocation
The function name (print in this case) along with the parentheses and argument(s), forms
the function invocation.

We'll discuss this in more depth soon, but let's just shed a little light on it right now.
What happens when Python encounters an invocation like this one?
function_name(argument)

Let's see:

First, Python checks if the name specified is legal (it browses its internal data in order to
find an existing function of the name; if this search fails, Python aborts the code)
second, Python checks if the function's requirements for the number of
arguments allows you to invoke the function in this way (e.g. if a specific function
demands exactly two arguments, any invocation delivering only one argument will be
considered erroneous, and will abort the code's execution)
third, Python leaves your code for a moment and jumps into the function you want to
invoke; of course, it takes your argument(s) too and passes it/them to the function;
fourth, the function executes its code, causes the desired effect (if any), evaluates the
desired result(s) (if any) and finishes its task;
finally, Python returns to your code (to the place just after the invocation) and resumes
its execution.

print("Hello, world!")

LAB 1 Working with the print() function
The print() command, which is one of the easiest directives in Python, simply prints out a
line to the screen.
In your first lab:

Use the print() function to print the line Hello, Python! to the screen. Use double
quotes around the string.
Having done that, use the print() function again, but this time print your first name.
Remove the double quotes and run your code. Watch Python's reaction. What kind of
error is thrown?
Then, remove the parentheses, put back the double quotes, and run your code again.
What kind of error is thrown this time?
Experiment as much as you can. Change double quotes to single quotes, use
multiple print() functions on the same line, and then on different lines. See what
happens.

Sample Solution

2.1.5 The print() function and its effect, arguments, and
values returned
Three important questions have to be answered as soon as possible:
1. What effect does the print() function cause?
The effect is very useful and very spectacular. The function:

takes its arguments (it may accept more than one argument and may also accept less
than one argument)
converts them into human-readable form if needed (as you may suspect, strings don't
require this action, as the string is already readable)
and sends the resulting data to the output device (usually the console); in other
words, anything you put into the print() function will appear on your screen.

No wonder then, that from now on, you'll utilize print() very intensively to see the results of
your operations and evaluations.
2. What arguments does print() expect?
Any. We'll show you soon that print() is able to operate with virtually all types of data offered
by Python. Strings, numbers, characters, logical values, objects ‒ any of these may be
successfully passed to print().
3. What value does the print() function return?
None. Its effect is enough.

1
2
3

1
2
3
4

2.1.6 Instructions
You have already seen a computer program that contains one function invocation. A function
invocation is one of many possible kinds of Python instruction.
Of course, any complex program usually contains many more instructions than one. The
question is: how do you couple more than one instruction into the Python code?
Python's syntax is quite specific in this area. Unlike most programming languages, Python
requires that there cannot be more than one instruction in a line.
A line can be empty (i.e. it may contain no instruction at all) but it must not contain two, three or
more instructions. This is strictly prohibited.
Note: Python makes one exception to this rule ‒ it allows one instruction to spread across
more than one line (which may be helpful when your code contains complex constructions).
Let's expand the code a bit. Run it and note what you see.

Your Python console should now look like this:
The itsy bitsy spider climbed up the waterspout.
Down came the rain and washed the spider out.

This is a good opportunity to make some observations:

the program invokes the print() function twice, and you can see two separate lines
in the console ‒ this means that print() begins its output from a new line each time it
starts its execution; you can change this behavior, but you can also use it to your
advantage;
each print() invocation contains a different string, as its argument, and the console
content reflects it ‒ this means that the instructions in the code are executed in the
same order in which they have been placed in the source file; no subsequent instruction
is executed until the previous one is completed (there are some exceptions to this rule,
but you can ignore them for now.)

We've changed the example a bit ‒ we've added one empty print() function invocation. We
call it empty because we haven't delivered any arguments to the function.
You can see it here. Run the code.
What happens?

If everything goes right, you should see something like this:
The itsy bitsy spider climbed up the waterspout.

print("The itsy bitsy spider climbed up the waterspout.")
print("Down came the rain and washed the spider out.")

print("The itsy bitsy spider climbed up the waterspout.")
print()
print("Down came the rain and washed the spider out.")

Down came the rain and washed the spider out.

As you can see, the empty print() invocation is not as empty as you may have expected ‒ it
does output an empty line, or (this interpretation is also correct) it outputs a newline.
This is not the only way to produce a newline in the output console. We're now going to show
you another way.

1
2
3
4

1
2
3
4

2.1.7 Python escape and newline characters
We've modified the code again. Look at it carefully.
There are two very subtle changes ‒ we've inserted a strange pair of characters inside the
rhyme. They look like this: \n.

Interestingly, while you can see two characters, Python sees one.
The backslash (\) has a very special meaning when used inside strings ‒ this is called the
escape character.
The word escape should be understood specifically ‒ it means that the series of characters in
the string escapes for the moment (a very short moment) to introduce a special inclusion.
In other words, the backslash doesn't mean anything in itself, but is only a kind of
announcement, that the next character after the backslash has a different meaning too.
The letter n placed after the backslash comes from the word newline.
Both the backslash and the n form a special symbol named a newline character, which urges
the console to start a new output line.
Run the code. Your console should now look like this:
The itsy bitsy spider
climbed up the waterspout.
Down came the rain
and washed the spider out.

As you can see, two newlines appear in the nursery rhyme, in the places where the \n have
been used.
This convention has two important consequences:
1. If you want to put just one backslash inside a string, don't forget its escaping nature ‒ you
have to double it. For example, an invocation like this will cause an error:
print("\")

while this one won't:
print("\\")

2. Not all escape pairs (the backslash coupled with another character) mean something.
Experiment with your code, run it, and see what happens.

print("The itsy bitsy spider\nclimbed up the waterspout.")
print()
print("Down came the rain\nand washed the spider out.")

print("The itsy bitsy spider\nclimbed up the waterspout.")
print()
print("Down came the rain\nand washed the spider out.")

1
2

2.1.8 Using multiple arguments
So far we have tested the print() function behavior with no arguments, and with one
argument. It's also worth trying to feed the print() function with more than one argument.
This is what we're going to test now:

There is one print() function invocation, but it contains three arguments. All of them are
strings.
The arguments are separated by commas. We've surrounded them with spaces to make
them more visible, but it's not really necessary, and we won't be doing it anymore.
In this case, the commas separating the arguments play a completely different role than the
comma inside the string. The former is a part of Python's syntax, while the latter is intended to
be shown in the console.
If you look at the code again, you'll see that there are no spaces inside the strings.
Run the code and see what happens.
The console should now be showing the following text:
The itsy bitsy spider climbed up the waterspout.

The spaces, removed from the strings, have appeared again. Can you explain why?
Two conclusions emerge from this example:
a print() function invoked with more than one argument outputs them all on one line;

the print() function puts a space between the outputted arguments on its own
initiative.

print("The itsy bitsy spider" , "climbed up" , "the waterspout.")

1
2
3

2.1.9 Positional arguments
Now that you know a bit about print() function customs, we're going to show you how to
change them.
You should be able to predict the output without running the code.

The way in which we are passing the arguments into the print() function is the most
common in Python, and is called the positional way. This name comes from the fact that the
meaning of the argument is dictated by its position (e.g. the second argument will be outputted
after the first, not the other way round).
Run the code and check if the output matches your predictions.

print("My name is", "Python.")
print("Monty Python.")

1
2
3

1
2
3

2.1.10 Keyword arguments
Python offers another mechanism for the passing of arguments, which can be helpful when
you want to convince the print() function to change its behavior a bit.
We aren't going to explain it in depth right now. We plan to do this when we talk about
functions. For now, we simply want to show you how it works. Feel free to use it in your own
programs.
The mechanism is called keyword arguments. The name stems from the fact that the
meaning of these arguments is taken not from its location (position) but from the special word
(keyword) used to identify them.
The print() function has two keyword arguments that you can use for your purposes. The
first is called end.
Here's a very simple example how to use a keyword argument.

In order to use it, it is necessary to know some rules:

a keyword argument consists of three elements: a keyword identifying the argument
(end here); an equal sign (=); and a value assigned to that argument;
any keyword arguments have to be put after the last positional argument (this is very
important)

In our example, we have made use of the end keyword argument, and set it to a string
containing one space.
Run the code to see how it works.
The console should now be showing the following text:
My name is Python. Monty Python.

As you can see, the end keyword argument determines the characters the print() function
sends to the output once it reaches the end of its positional arguments.
The default behavior reflects the situation where the end keyword argument is implicitly used
in the following way: end="\n".
And now it's time to try something more difficult.
If you look carefully, you'll see that we've used the end argument, but the string assigned to it
is empty (it contains no characters at all).
What will happen now? Run the program to find out.

As the end argument has been set to nothing, the print() function outputs nothing too, once
its positional arguments have been exhausted.

print("My name is", "Python.", end=" ")
print("Monty Python.")

print("My name is ", end="")
print("Monty Python.")

1
2

1
2
3

The console should now be showing the following text:
My name is Monty Python.

Note: no newlines have been sent to the output.
The string assigned to the end keyword argument can be of any length. Experiment with it if
you want.
We said previously that the print() function separates its outputted arguments with spaces.
This behavior can be changed, too.
The keyword argument that can do this is named sep (as in separator).
Look at the following code and run it.

The sep argument delivers the following results:
My-name-is-Monty-Python.

The print() function now uses a dash, instead of a space, to separate the outputted
arguments.
Note: the sep argument's value may be an empty string, too. Try it for yourself.
Both keyword arguments may be mixed in one invocation, just like here.

The example doesn't make much sense, but it visibly presents the interactions
between end and sep.
Can you predict the output?
Run the code and see if it matches your predictions.
Now that you understand the print() function, you're ready to consider how to store and
process data in Python.
Without print(), you wouldn't be able to see any results.

print("My", "name", "is", "Monty", "Python.", sep="-")

print("My", "name", "is", sep="_", end="*")
print("Monty", "Python.", sep="*", end="*\n")

1
2
3

LAB 2 The print() function and its arguments
Modify the first line of code, using the sep and end keywords, to match the expected output.
Use the two print() functions.
Don't change anything in the second print() invocation.

Expected output
Programming***Essentials***in...Python

Code

Sample Solution

print("Programming","Essentials","in")
print("Python")

1
2
3
4
5
6
7
8
9

LAB 3 Formatting the output
We strongly encourage you to play with the code we've written for you, and make some
(maybe even destructive) amendments. Feel free to modify any part of the code, but there is
one condition ‒ learn from your mistakes and draw your own conclusions.
Try to:

minimize the number of print() function invocations by inserting the \n sequence into
the strings;
make the arrow twice as large (but keep the proportions)
duplicate the arrow, placing both arrows side by side; note: a string may be multiplied by
using the following trick: "string" * 2 will produce "stringstring" (we'll tell you
more about it soon)
remove any of the quotes, and look carefully at Python's response; pay attention to
where Python sees an error ‒ is this the place where the error really exists?
do the same with some of the parentheses;
change any of the print words into something else, differing only in case (e.g. Print)
‒ what happens now?
replace some of the quotes with apostrophes; watch what happens carefully.

Code

Sample Solution

print(" *")
print(" * *")
print(" * *")
print(" * *")
print("*** ***")
print(" * *")
print(" * *")
print(" *****")

2.1 SECTION SUMMARY
1. The print() function is a built-in function. It prints/outputs a specified message to the
screen/console window.
2. Built-in functions, contrary to user-defined functions, are always available and don't have to
be imported. Python 3.8 comes with 69 built-in functions. You can find their full list provided in
alphabetical order in the Python Standard Library.
3. To call a function (this process is known as function invocation or function call), you need
to use the function name followed by parentheses. You can pass arguments into a function by
placing them inside the parentheses. You must separate arguments with a comma,
e.g. print("Hello,", "world!"). An "empty" print() function outputs an empty line to
the screen.
4. Python strings are delimited with quotes, e.g. "I am a string" (double quotes), or 'I
am a string, too' (single quotes).
5. Computer programs are collections of instructions. An instruction is a command to perform
a specific task when executed, e.g. to print a certain message to the screen.
6. In Python strings the backslash (\) is a special character which announces that the next
character has a different meaning, e.g. \n (the newline character) starts a new output line.
7. Positional arguments are the ones whose meaning is dictated by their position, e.g. the
second argument is outputted after the first, the third is outputted after the second, etc.
8. Keyword arguments are the ones whose meaning is not dictated by their location, but by a
special word (keyword) used to identify them.
9. The end and sep parameters can be used for formatting the output of
the print() function. The sep parameter specifies the separator between the outputted
arguments, e.g. print("H", "E", "L", "L", "O", sep="-"), whereas
the end parameter specifies what to print at the end of the print statement.

https://docs.python.org/3/library/functions.html

1
2
3

1
2

2.1 SECTION QUIZ
Question 1: What is the output of the following program?

Question 2: What is the output of the following program?

Question 3: Which of the following print() function invocations will cause a SyntaxError?
print('Greg\'s book.')
print("'Greg's book.'")
print('"Greg\'s book."')
print("Greg\'s book.")
print('"Greg's book."')

Check

print("My\nname\nis\nBond.", end=" ")
print("James Bond.")

print(sep="&", "fish", "chips")

SECTION 2.2 – PYTHON LITERALS
Now it's time to talk about Python literals.

1
2
3

2.2.1 Literals – the data in itself
Now that you have a little knowledge of some of the powerful features offered by
the print() function, it's time to learn about some new issues, and one important new term ‒
the literal.
A literal is data whose values are determined by the literal itself.
As this is a difficult concept to understand, a good example may be helpful.
Take a look at the following set of digits:
123

Can you guess what value it represents? Of course you can ‒ it's one hundred twenty three.
But what about this:
c

Does it represent any value? Maybe. It can be the symbol of the speed of light, for example. It
can also be the constant of integration. Or even the length of a hypotenuse in the sense of a
Pythagorean theorem. There are many possibilities.
You cannot choose the right one without some additional knowledge.
And this is the clue: 123 is a literal, and c is not.
You use literals to encode data and to put them into your code. We're now going to show
you some conventions you have to obey when using Python.
Let's start with a simple experiment ‒ take a look at the following snippet.

The first line looks familiar. The second seems to be erroneous due to the visible lack of
quotes.
Try to run it.
If everything goes okay, you'll now see two identical lines.
What happened? What does it mean?
Through this example, you encounter two different types of literals:

a string, which you already know,
and an integer number, something completely new.

The print() function presents them in exactly the same way ‒ this example is obvious, as
their human-readable representation is also the same. Internally, in the computer's memory,
these two values are stored in completely different ways ‒ the string exists as just a string ‒ a
series of letters.
The number is converted into machine representation (a set of bits). The print() function is
able to show them both in a form readable to humans.
We're now going to be spending some time discussing numeric literals and their internal life.

print("2")
print(2)

2.2.2 Integers
You may already know a little about how computers perform calculations on numbers. Perhaps
you've heard of the binary system, and know that it's the system computers use for storing
numbers, and that those computers can perform any operation upon them.
We won't explore the intricacies of positional numeric systems here, but we will say that the
numbers handled by modern computers are of two types:

integers, that is, those which are devoid of the fractional part;
and floating-point numbers (or simply floats), that contain (or are able to contain) the
fractional part.

This definition is not entirely accurate, but quite sufficient for now. The distinction is very
important, and the boundary between these two types of numbers is very strict. Both of these
kinds of numbers differ significantly in how they're stored in a computer memory and in the
range of acceptable values.
The characteristic of the numeric value which determines its kind, range, and application, is
called the type.
If you encode a literal and place it inside Python code, the form of the literal determines the
representation (type) Python will use to store it in the memory.
For now, let's leave the floating-point numbers aside (we'll come back to them soon) and
consider the question of how Python recognizes integers.
The process is almost like how you would write them with a pencil on paper – it's simply a
string of digits that make up the number. But there's a reservation ‒ you must not interject any
characters that are not digits inside the number.
Take, for example, the number eleven million one hundred eleven thousand one hundred
eleven. If you took a pencil in your hand right now, you would write the number like
this: 11,111,111, or like this: 11.111.111, or even like this: 11 111 111.
It's clear that this provision makes it easier to read, especially when the number consists of
many digits. However, Python doesn't accept things like these. It's prohibited. What Python
does allow, though, is the use of underscores in numeric literals.*
Therefore, you can write this number either like this: 11111111, or like this: 11_111_111.
NOTE Python 3.6 has introduced underscores in numeric literals, allowing for the placement of
single underscores between digits and after base specifiers for improved readability. This
feature is not available in older versions of Python.
And how do we code negative numbers in Python? As usual ‒ by adding a minus. You can
write: -11111111, or -11_111_111.
Positive numbers do not need to be preceded by the plus sign, but it's permissible, if you wish
to do it. The following lines describe the same number: +11111111 and 11111111.

Octal and hexadecimal numbers
There are two additional conventions in Python that are unknown to the world of mathematics.
The first allows us to use numbers in an octal representation.
If an integer number is preceded by an 0O or 0o prefix (zero-o), it will be treated as an octal
value. This means that the number must contain digits taken from the [0..7] range only.

1
2

1
2

0o123 is an octal number with a (decimal) value equal to 83.
The print() function does the conversion automatically. Try this:

The second convention allows us to use hexadecimal numbers. Such numbers should be
preceded by the prefix 0x or 0X (zero-x).
0x123 is a hexadecimal number with a (decimal) value equal to 291. The print() function
can manage these values too. Try this:

print(0o123)

print(0x123)

2.2.3 Floats
Now it's time to talk about another type, which is designed to represent and to store the
numbers that (as a mathematician would say) have a non-empty decimal fraction.
They are the numbers that have (or may have) a fractional part after the decimal point, and
although such a definition is very poor, it's certainly sufficient for what we wish to discuss.
Whenever we use a term like two and a half or minus zero point four, we think of numbers
which the computer considers floating-point numbers:
2.5
-0.4

Note: two and a half looks normal when you write it in a program, although if your native
language prefers to use a comma instead of a point in the number, you should ensure that
your number doesn't contain any commas at all.
Python will not accept that, or (in very rare but possible cases) may misunderstand your
intentions, as the comma itself has its own reserved meaning in Python.
If you want to use just a value of two and a half, you should write it as shown previously. Note
once again: there is a point between 2 and 5, not a comma.
As you can probably imagine, the value of zero point four could be written in Python as:
0.4

But don't forget this simple rule ‒ you can omit zero when it is the only digit in front of or after
the decimal point.
In essence, you can write the value 0.4 as:
.4

For example: the value of 4.0 could be written as:
4.

This will change neither its type nor its value.

Ints vs. floats
The decimal point is essential for recognizing floating-point numbers in Python.
Look at these two numbers:
4
4.0

You may think that they are exactly the same, but Python sees them in a completely different
way.
4 is an integer number, whereas 4.0 is a floating-point number.
The point is what makes a float.
On the other hand, it's not only points that make a float. You can also use the letter e.
When you want to use any numbers that are very large or very small, you can use scientific
notation.
Take, for example, the speed of light, expressed in meters per second. Written directly it would
look like this: 300000000.

To avoid writing out so many zeros, physics textbooks use an abbreviated form, which you
have probably already seen: 3 x 108.
It reads: three times ten to the power of eight.
In Python, the same effect is achieved in a slightly different way ‒ take a look:
3E8

The letter E (you can also use the lower-case letter e ‒ it comes from the word exponent) is a
concise record of the phrase times ten to the power of.
Note:

the exponent (the value after the E) has to be an integer;
the base (the value in front of the E) may be either an integer or a float.

Coding floats
Let's see how this convention is used to record numbers that are very small (in the sense of
their absolute value, which is close to zero).
A physical constant called Planck's constant (and denoted as h), according to the textbooks,
has the value of: 6.62607 x 10-34.
If you would like to use it in a program, you should write it this way:
6.62607E-34

Note: the fact that you've chosen one of the possible forms of coding float values doesn't mean
that Python will present it the same way.
Python may sometimes choose different notation than you.
For example, let's say you've decided to use the following float literal:
0.0000000000000000000001

When you run this literal through Python:
print(0.0000000000000000000001)

this is the result:
1e-22

Python always chooses the more economical form of the number's presentation, and you
should take this into consideration when creating literals.

1
2

1
2

1
2

2.2.4 Strings
Strings are used when you need to process text (like names of all kinds, addresses, novels,
etc.), not numbers.
You already know a bit about them, e.g. that strings need quotes the way floats need points.
This is a very typical string: "I am a string."
However, there is a catch. The catch is how to encode a quote inside a string which is already
delimited by quotes.
Let's assume that we want to print a very simple message saying:
I like "Monty Python"

How do we do it without generating an error? There are two possible solutions.
The first is based on the concept we already know of the escape character, which you should
remember is played by the backslash. The backslash can escape quotes too. A quote
preceded by a backslash changes its meaning ‒ it's not a delimiter, but just a quote. This will
work as intended:

Note: there are two escaped quotes inside the string ‒ can you see them both?
The second solution may be a bit surprising. Python can use an apostrophe instead of a
quote. Either of these characters may delimit strings, but you must be consistent.
If you open a string with a quote, you have to close it with a quote.
If you start a string with an apostrophe, you have to end it with an apostrophe.
This example will work too:

Note: you don't need to do any escaping here.

Coding strings
Now, the next question is: how do you embed an apostrophe into a string placed between
apostrophes?
You should already know the answer, or to be precise, two possible answers.
Try to print out a string containing the following message:
I'm Monty Python.

Do you know how to do it? Click Check to see if you were right:
Check (Sample Solutions)

print("I like \"Monty Python\"")

print('I like "Monty Python"')

print('I\'m Monty Python.')

As you can see, the backslash is a very powerful tool ‒ it can escape not only quotes, but also
apostrophes.
We've shown it already, but we want to emphasize this phenomenon once more: a string can
be empty ‒ it may contain no characters at all.
An empty string still remains a string:
''
""

1
2
3

2.2.5 Boolean values
To conclude with Python's literals, there are two additional ones.
They're not as obvious as any of the previous ones, as they're used to represent a very
abstract value ‒ truthfulness.
Each time you ask Python if one number is greater than another, the question results in the
creation of some specific data ‒ a Boolean value.
The name comes from George Boole (1815-1864), the author of the fundamental work, The
Laws of Thought, which contains the definition of Boolean algebra ‒ a part of algebra which
makes use of only two distinct values: True and False, denoted as 1 and 0.
A programmer writes a program, and the program asks questions. Python executes the
program, and provides the answers. The program must be able to react according to the
received answers.
Fortunately, computers know only two kinds of answers:

Yes, this is true;
No, this is false.

You'll never get a response like: I don't know or Probably yes, but I don't know for sure.
Python, then, is a binary reptile.
These two Boolean values have strict denotations in Python:
True
False

You cannot change anything ‒ you have to take these symbols as they are, including case-
sensitivity.
Challenge: What will be the output of the following snippet of code?

Run the code to check. Can you explain the result?

print(True > False)
print(True < False)

LAB 4 Python literals – strings
Write a one-line piece of code, using the print() function, as well as the newline and escape
characters, to match the expected result outputted on three lines.

Expected output
"I'm"
""learning""
"""Python"""

Hint
Sample Solution

2.2 SECTION SUMMARY
1. Literals are notations for representing some fixed values in code. Python has various types
of literals – for example, a literal can be a number (numeric literals, e.g. 123), or a string (string
literals, e.g. "I am a literal.").
2. The binary system is a system of numbers that employs 2 as the base. Therefore, a binary
number is made up of 0s and 1s only, e.g. 1010 is 10 in decimal.
Octal and hexadecimal numeration systems, similarly, employ 8 and 16 as their bases
respectively. The hexadecimal system uses the decimal numbers and six extra letters.
3. Integers (or simply ints) are one of the numerical types supported by Python. They are
numbers written without a fractional component, e.g. 256, or -1 (negative integers).
4. Floating-point numbers (or simply floats) are another one of the numerical types supported
by Python. They are numbers that contain (or are able to contain) a fractional component,
e.g. 1.27.
5. To encode an apostrophe or a quote inside a string, you can either use the escape
character, e.g. 'I\'m happy.', or open and close the string using an opposite set of
symbols to the ones you wish to encode, e.g. "I'm happy." to encode an apostrophe,
and 'He said "Python", not "typhoon"' to encode a (double) quote.
6. Boolean values are the two constant objects True and False used to represent truth
values (in numeric contexts 1 is True, while 0 is False.
EXTRA
There is one more, special literal that is used in Python: the None literal. This literal is
a NoneType object, and it is used to represent the absence of a value. We'll tell you more
about it soon.

2.2 SECTION QUIZ
Question 1: What types of literals are the following two examples?
"Hello ", "007"

Question 2: What types of literals are the following four examples?
"1.5", 2.0, 528, False

Question 3: What is the decimal value of the following binary number?
1011

Check

SECTION 2.3 – OPERATORS: DATA MANIPULATION TOOLS
In this section, we will talk about Python operators.

1
2

2.3.1 Python as a calculator
Now, we're going to show you a completely new side of the print() function. You already
know that the function is able to show you the values of the literals passed to it by arguments.

Run the code. Can you guess the output?
You should see the number four. Feel free to experiment with other operators.
Without taking this too seriously, you've just discovered that Python can be used as a
calculator. Not a very handy one, and definitely not a pocket one, but a calculator nonetheless.
Taking it more seriously, we are now entering the province of operators and expressions.

print(2+2)

1
2
3
4
5

2.3.2 Basic operators
An operator is a symbol of the programming language, which is able to operate on the values.
For example, just as in arithmetic, the + (plus) sign is the operator which is able to add two
numbers, giving the result of the addition.
Not all Python operators are as obvious as the plus sign, though, so let's go through some of
the operators available in Python, and we'll explain which rules govern their use, and how to
interpret the operations they perform.
We'll begin with the operators which are associated with the most widely recognizable
arithmetic operations:
+
-
*
/
//
%
**
The order of their appearance is not accidental. We'll talk more about it once we've gone
through them all.
Remember: Data and operators when connected together form expressions. The simplest
expression is a literal itself.

Exponentiation
Look at the following example:

Note: we've surrounded the double asterisks with spaces in our examples. It's not compulsory,
but it improves the readability of the code.
The examples show a very important feature of virtually all Python numerical operators.
Run the code and look carefully at the results it produces. Can you see any regularity here?
Remember: It's possible to formulate the following rules based on this result:

when both ** arguments are integers, the result is an integer, too;
when at least one ** argument is a float, the result is a float, too.

This is an important distinction to remember.

Multiplication
An * (asterisk) sign is a multiplication operator.

print(2 ** 3)
print(2 ** 3.)
print(2. ** 3)
print(2. ** 3.)

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

Run the following code and check if our integer vs. float rule is still working.

Division
A / (slash) sign is a division operator.
The value in front of the slash is a dividend, the value behind the slash, a divisor.
Run the following code and analyze the results.

You should see that there is an exception to the rule.
The result produced by the division operator is always a float, regardless of whether or
not the result seems to be a float at first glance: 1 / 2, or if it looks like a pure integer: 2 / 1.
Is this a problem? Yes, it is. It happens sometimes that you really need a division that provides
an integer value, not a float.
Fortunately, Python can help you with that.

Integer division (floor division)
A // (double slash) sign is an integer division operator. It differs from the standard / operator
in two details:

its result lacks the fractional part ‒ it's absent (for integers), or is always equal to zero
(for floats); this means that the results are always rounded;
it conforms to the integer vs. float rule.

Run the following example and see the results:

As you can see, integer by integer division gives an integer result. All other cases produce
floats.
Let's do some more advanced tests.
Look at the following snippet:

print(2 * 3)
print(2 * 3.)
print(2. * 3)
print(2. * 3.)

print(6 / 3)
print(6 / 3.)
print(6. / 3)
print(6. / 3.)

print(6 // 3)
print(6 // 3.)
print(6. // 3)
print(6. // 3.)

1
2
3

1
2
3

1
2

Imagine that we used / instead of // ‒ could you predict the results?
Yes, it would be 1.5 in both cases. That's clear.
But what results should we expect with // division?
Run the code and see for yourself.
What we get is two ones ‒ one integer and one float.
The result of integer division is always rounded to the nearest integer value that is less than
the real (not rounded) result.
This is very important: rounding always goes to the lesser integer.
Look at the following code and try to predict the results once again:

Note: some of the values are negative. This will obviously affect the result. But how?
The result is two negative twos. The real (not rounded) result is -1.5 in both cases. However,
the results are the subjects of rounding. The rounding goes toward the lesser integer value,
and the lesser integer value is -2, hence: -2 and -2.0.
NOTE
Integer division can also be called floor division. You will definitely come across this term in
the future.

Remainder (modulo)
The next operator is quite a peculiar one, because it has no equivalent among traditional
arithmetic operators.
Its graphical representation in Python is the % (percent) sign, which may look a bit confusing.
Try to think of it as a slash (division operator) accompanied by two funny little circles.
The result of the operator is a remainder left after the integer division.
In other words, it's the value left over after dividing one value by another to produce an integer
quotient.
Note: the operator is sometimes called modulo in other programming languages.
Take a look at the snippet ‒ try to predict its result and then run it:

As you can see, the result is two. This is why:

14 // 4 gives 3 → this is the integer quotient;

print(6 // 4)
print(6. // 4)

print(-6 // 4)
print(6. // -4)

print(14 % 4)

1
2

1
2
3

1
2
3
4

3 * 4 gives 12 → as a result of quotient and divisor multiplication;
14 – 12 gives 2 → this is the remainder.

This example is somewhat more complicated:

What is the result?
Check

How not to divide
As you probably know, division by zero doesn't work.
Do not try to:

perform a division by zero;
perform an integer division by zero;
find a remainder of a division by zero.

Addition
The addition operator is the + (plus) sign, which is fully in line with mathematical standards.
Again, take a look at the snippet of the following program:

The result should be nothing surprising. Run the code to check it.

The subtraction operator, unary and binary operators
The subtraction operator is obviously the – (minus) sign, although you should note that this
operator also has another meaning ‒ it can change the sign of a number.
This is a great opportunity to present a very important distinction
between unary and binary operators.
In subtracting applications, the minus operator expects two arguments: the left
(a minuend in arithmetical terms) and right (a subtrahend).
For this reason, the subtraction operator is considered to be one of the binary operators, just
like the addition, multiplication and division operators.
But the minus operator may be used in a different (unary) way ‒ take a look at the last line of
the snippet:

print(12 % 4.5)

print(-4 + 4)
print(-4. + 8)

print(-4 – 4)
print(4. – 8)
print(-1.1)

1
2

By the way: there is also a unary + operator. You can use it like this:

The operator preserves the sign of its only argument – the right one.
Although such a construction is syntactically correct, using it doesn't make much sense, and it
would be hard to find a good rationale for doing so.
Take a look at the previous snippet ‒ can you guess its output?

print(+2)

1
2

1
2

1
2

2.3.3 Operators and their priorities
So far, we've treated each operator as if it had no connection with the others. Obviously, such
an ideal and simple situation is a rarity in real programming.
Also, you will very often find more than one operator in one expression, and then things are no
longer so simple.
Consider the following expression:
2 + 3 * 5

You probably remember from school that multiplications precede additions.
You surely remember that you should first multiply 3 by 5 and, keeping the 15 in your memory,
then add it to 2, thus getting the result of 17.
The phenomenon that causes some operators to act before others is known as the hierarchy
of priorities.
Python precisely defines the priorities of all operators, and assumes that operators of a higher
priority perform their operations before the operators of a lower priority.
So, if you know that * has a higher priority than +, the computation of the final result should be
obvious.

Operators and their bindings
The binding of the operator determines the order of computations performed by some
operators with equal priority, put side by side in one expression.
Most of Python's operators have left-sided binding, which means that the calculation of the
expression is conducted from left to right.

There are two possible ways of evaluating this expression:

from left to right: first 9 % 6 gives 3, and then 3 % 2 gives 1;
from right to left: first 6 % 2 gives 0, and then 9 % 0 causes a fatal error.

Run the example and see what you get.

The result should be 1. This operator has left-sided binding. But there's one interesting
exception.
Repeat the experiment, but now with exponentiation.
Use this snippet of code:

print(9 % 6 % 2)

print(9 % 6 % 2)

print(2 ** 2 ** 3)

1
2
3
4

1
2

The two possible results are:

2 ** 2 → 4; 4 ** 3 → 64
2 ** 3 → 8; 2 ** 8 → 256

Run the code. What do you see?
The result clearly shows that the exponentiation operator uses right-sided binding.
This has an interesting effect. If the exponentiation operator uses right-sided binding, can you
guess the output of the following snippet?

Check

List of priorities
Since you're new to Python operators, we don't want to present the complete list of operator
priorities right now.
Instead, we'll show you a truncated form, and we'll expand it consistently as we introduce new
operators.
Look at the following table:

PRIORITY OPERATOR
1 **

2 +, – (note: unary operators located next to the right of the power operator
bind more strongly) unary

3 *, /, //, %
4 +, - binary
Note: we've enumerated the operators in order from the highest (1) to the lowest (4)
priorities.
Try to work through the following expression:

Both operators (* and %) have the same priority, so the result can be guessed only when you
know the binding direction. What do you think? What is the result?
Check

Operators and parentheses
Of course, you're always allowed to use parentheses, which can change the natural order of a
calculation.

print(-3 ** 2)
print(-2 ** 3)
print(-(3 ** 2))

print(2 * 3 % 5)

1
2

In accordance with the arithmetic rules, subexpressions in parentheses are always
calculated first.
You can use as many parentheses as you need, and they're often used to improve the
readability of an expression, even if they don't change the order of the operations.
An example of an expression with multiple parentheses is here:

Try to compute the value that's printed to the console. What's the result of
the print() function?
Check

print((5 * ((25 % 13) + 100) / (2 * 13)) // 2)

2.3 SECTION SUMMARY

Key takeaways
1. An expression is a combination of values (or variables, operators, calls to functions ‒ you
will learn about them soon) which evaluates to a certain value, e.g. 1 + 2.
2. Operators are special symbols or keywords which are able to operate on the values and
perform (mathematical) operations, e.g. the * operator multiplies two values: x * y.
3. Arithmetic operators in Python: + (addition), – (subtraction), * (multiplication), / (classic
division ‒ always returns a float), % (modulus ‒ divides left operand by right operand and
returns the remainder of the operation, e.g. 5 % 2 = 1), ** (exponentiation ‒ left operand
raised to the power of right operand, e.g. 2 ** 3 = 2 * 2 * 2 = 8), // (floor/integer
division ‒ returns a number resulting from division, but rounded down to the nearest whole
number, e.g. 3 // 2.0 = 1.0)
4. A unary operator is an operator with only one operand, e.g. -1, or +3.
5. A binary operator is an operator with two operands, e.g. 4 + 5, or 12 % 5.
6. Some operators act before others – the hierarchy of priorities:

the ** operator (exponentiation) has the highest priority;
then the unary + and – (note: a unary operator to the right of the exponentiation operator
binds more strongly, for example 4 ** -1 equals 0.25)
then: *, /, and %,
and finally, the lowest priority: binary + and -.

7. Subexpressions in parentheses are always calculated first, e.g. 15 – 1 * (5 * (1 +
2)) = 0.
8. The exponentiation operator uses right-sided binding, e.g. 2 ** 2 ** 3 = 256.

1
2

1
2

1
2

2.3 SECTION QUIZ
Question 1: What is the expected output of the following snippet?

Question 2: What is the expected output of the following snippet?

Question 3: What is the expected output of the following snippet?

Check

print((2 ** 4), (2 * 4.), (2 * 4))

print((-2 / 4), (2 / 4), (2 // 4), (-2 // 4))

print((2 % -4), (2 % 4), (2 ** 3 ** 2))

SECTION 2.4 – VARIABLES
This part of the course focuses on variables – we will learn what they are, how to use them,
and what the rules are that govern them. Ready?

2.4.1 Variables – data-shaped boxes
It seems fairly obvious that Python should allow you to encode literals carrying number and
text values.
You already know that you can do some arithmetic operations with these numbers: add,
subtract, etc. You'll be doing that many times.
But it's quite a normal question to ask how to store the results of these operations, in order to
use them in other operations, and so on.
How do you save the intermediate results, and use them again to produce subsequent ones?
Python will help you with that. It offers special "boxes" (or "containers" as we may call them) for
that purpose, and these boxes are called variables ‒ the name itself suggests that the content
of these containers can be varied in (almost) any way.
What does every Python variable have?

a name;
a value (the content of the container)

Let's start with the issues related to a variable's name.
Variables do not appear in a program automatically. As a developer, you must decide how
many and which variables to use in your programs.
You must also name them.

2.4.2 Variable names
If you want to give a name to a variable, you must follow some strict rules:

the name of the variable must be composed of upper-case or lower-case letters, digits,
and the character _ (underscore)
the name of the variable must begin with a letter;
the underscore character is a letter;
upper- and lower-case letters are treated as different (a little differently than in the real
world – Alice and ALICE are the same first names, but in Python they are two different
variable names, and consequently, two different variables);
the name of the variable must not be any of Python's reserved words (the keywords –
we'll explain more about this soon).

Note that the same restrictions apply to function names.
Python does not impose restrictions on the length of variable names, but that doesn't mean
that a long variable name is always better than a short one.
Here are some correct, but not always convenient variable names:

MyVariable
i
l
t34
Exchange_Rate
counter
days_to_christmas
TheNameIsTooLongAndHardlyReadable
_

These variable names are also correct:

Adiós_Señora
sûr_la_mer
Einbahnstraße
переменная

Python lets you use not only Latin letters but also characters specific to languages that use
other alphabets.
And now for some incorrect names:

10t (does not begin with a letter)
!important (does not begin with a letter)
exchange rate (contains a space).

NOTE

The PEP 8 -- Style Guide for Python Code recommends the following naming convention for
variables and functions in Python:

variable names should be lowercase, with words separated by underscores to improve
readability (e.g. var, my_variable)
function names follow the same convention as variable names
(e.g. fun, my_function)
it's also possible to use mixed case (e.g. myVariable), but only in contexts where that's
already the prevailing style, to retain backward compatibility with the adopted
convention.

Keywords
Take a look at the list of words that play a very special role in every Python program.
['False', 'None', 'True', 'and', 'as', 'assert', 'break', 'class',
'continue', 'def', 'del', 'elif', 'else', 'except', 'finally', 'for',
'from', 'global', 'if', 'import', 'in', 'is', 'lambda', 'nonlocal',
'not', 'or', 'pass', 'raise', 'return', 'try', 'while', 'with',
'yield']

They are called keywords or (more precisely) reserved keywords. They are reserved
because you mustn't use them as names: neither for your variables, nor functions, nor any
other named entities you want to create.
The meaning of the reserved word is predefined, and mustn't be changed in any way.
Fortunately, due to the fact that Python is case-sensitive, you can modify any of these words
by changing the case of any letter, thus creating a new word, which is not reserved anymore.
For example ‒ you can't name your variable like this:
import

You mustn't have a variable named in such a way ‒ it is prohibited. But you can do this instead:
Import

These words might be a mystery to you now, but you'll soon learn the meaning of them.

https://www.python.org/dev/peps/pep-0008/

1
2
3

2.4.3 How to create a variable
What can you put inside a variable?
Anything.
You can use a variable to store any value of any of the already presented kinds, and many
more of the ones we haven't shown you yet.
The value of a variable is what you have put into it. It can vary as often as you need or want. It
can be an integer one moment, and a float a moment later, eventually becoming a string.
Let's talk now about two important things ‒ how variables are created, and how to put
values inside them (or rather ‒ how to give or pass values to them).
REMEMBER
A variable comes into existence as a result of assigning a value to it. Unlike in other
languages, you don't need to declare it in any special way.
If you assign any value to a non-existent variable, the variable will be automatically created.
You don't need to do anything else.
The creation (in other words, its syntax) is extremely simple: just use the name of the
desired variable, then the equal sign (=) and the value you want to put into the variable.
Take a look at the following snippet:

It consists of two simple instructions:

The first of them creates a variable named var, and assigns a literal with an integer
value equal to 1.
The second prints the value of the newly created variable to the console.

As you can see, print() has yet another side to it ‒ it can handle variables too. Do you know
what the output of the snippet will be? Run the code to check.

var = 1
print(var)

1
2
3
4
5
6

1
2
3

1
2
3

2.4.4 How to use a variable
You're allowed to use as many variable declarations as you need to achieve your goal, like
this:

However, you're not allowed to use a variable which doesn't exist (in other words, a
variable that was not assigned a value).
This example will cause an error:

Do you know why? We've tried to use a variable named Var, which doesn't have any value
(note: var and Var are different entities, and have nothing in common as far as Python's
concerned).
REMEMBER
You can use the print() function and combine text and variables using the + operator to
output strings and variables. For example:

Can you guess the output of the snippet?
Check

var = 1
account_balance = 1000.0
client_name = 'John Doe'
print(var, account_balance, client_name)
print(var)

var = 1
print(Var)

var = "3.8.5"
print("Python version: " + var)

1
2
3
4
5

1
2
3
4

2.4.5 How to assign a new value to an already existing
variable
How do you assign a new value to a variable that already exists? In the same way. You just
need to use the equal sign.
The equal sign is in fact an assignment operator. Although this may sound strange, the
operator has a simple syntax and unambiguous interpretation.
It assigns the value of its right argument to the left, while the right argument may be an
arbitrarily complex expression involving literals, operators and already defined variables.
Look at the code:

The code sends two lines to the console:
1
2

The first line of the snippet creates a new variable named var and assigns 1 to it.
The statement reads: assign a value of 1 to a variable named var.
We can say it shorter: assign 1 to var.
Some prefer to read such a statement as: var becomes 1.
The third line assigns the same variable with the new value taken from the variable itself,
summed with 1. Seeing a record like that, a mathematician would probably protest ‒ no value
may be equal to itself plus one. This is a contradiction. But Python treats the sign = not
as equal to, but as assign a value.
So how do you read such a record in the program?
Take the current value of the variable var, add 1 to it and store the result in the variable var.
In effect, the value of variable var has been incremented by one, which has nothing to do
with comparing the variable with any value.
Do you know what the output of the following snippet will be?

Check

var = 1
print(var)
var = var + 1
print(var)

var = 100
var = 200 + 300
print(var)

1
2
3
4
5

2.4.6 Solving simple mathematical problems
Now you should be able to construct a short program solving simple mathematical problems
such as the Pythagorean theorem:
The square of the hypotenuse is equal to the sum of the squares of the other two sides.
The following code evaluates the length of the hypotenuse (i.e. the longest side of a right-
angled triangle, the one opposite of the right angle) using the Pythagorean theorem:

Note: we need to make use of the ** operator to evaluate the square root as:
√(x) = x(½)
and
c = √(a2 + b2)
Can you guess the output of the code?
Check

a = 3.0
b = 4.0
c = (a ** 2 + b ** 2) ** 0.5
print("c =", c)

LAB 5 Variables
Here is a short story:
Once upon a time in Appleland, John had three apples, Mary had five apples, and Adam had
six apples. They were all very happy and lived for a long time. End of story.
Your task is to:

create the variables: john, mary, and adam;
assign values to the variables. The values must be equal to the numbers of fruit
possessed by John, Mary, and Adam respectively;
having stored the numbers in the variables, print the variables on one line, and separate
each of them with a comma;
now create a new variable named total_apples equal to the addition of the three
previous variables;
print the value stored in total_apples to the console;
experiment with your code: create new variables, assign different values to them, and
perform various arithmetic operations on them (e.g. +, -, *, /, //, etc.). Try to print a
string and an integer together on one line, e.g. "Total number of
apples:" and total_apples.

Sample Solution

1
2

1
2

1
2
3

2.4.7 Shortcut operators
It's time for the next set of operators that make a developer's life easier. Very often, we want to
use one and the same variable both to the right and left sides of the = operator.
For example, if we need to calculate a series of successive values of powers of 2, we may use
a piece like this:

You may use an expression like this if you can't fall asleep and you're trying to deal with it
using some good, old-fashioned methods:

Python offers you a shortened way of writing operations like these, which can be coded as
follows:

Let's try to present a general description for these operations. If op is a two-argument operator
(this is a very important condition) and the operator is used in the following context...:
variable = variable op expression

...then it can be simplified and shown as follows:
variable op= expression

Take a look at the following examples. Make sure you understand them all.

EXPRESSION SHORTCUT OPERATOR
i = i + 2 * j i += 2 * j
var = var / 2 var /= 2

rem = rem % 10 rem %= 10
j = j – (i + var + rem)j -= (i + var + rem)

X = X ** 2 x **= 2

x = x * 2

sheep = sheep + 1

x *= 2
sheep += 1

1
2
3
4
5

6

7

LAB 6 Variables ‒ a simple converter
Miles and kilometers are units of length or distance.
Bearing in mind that 1 mile is equal to approximately 1.61 kilometers, complete the program
so that it converts:

miles to kilometers;
kilometers to miles.

Do not change anything in the existing code. Write your code in the places indicated by ###.
Test your program with the data we've provided in the source code.
Pay particular attention to what is going on inside the print() function. Analyze how we
provide multiple arguments to the function, and how we output the expected data.
Note that some of the arguments inside the print() function are strings (e.g. "miles is",
whereas some other are variables (e.g. miles).
TIP
There's one more interesting thing happening there. Can you see another function inside
the print() function? It's the round() function. Its job is to round the outputted result to the
number of decimal places specified in the parentheses, and return a float (inside
the round() function you can find the variable name, a comma, and the number of decimal
places we're aiming for). We're going to talk about functions very soon, so don't worry that
everything may not be fully clear yet. We just want to spark your curiosity.
After completing the lab, open the Sandbox, and experiment some more. Try to write different
converters, e.g. a USD to EUR converter, a temperature converter, etc. ‒ let your imagination
fly! Try to output the results by combining strings and variables. Try to use and experiment with
the round() function to round your results to one, two, or three decimal places. Check out
what happens if you don't provide any number of digits. Remember to test your programs.
Experiment, draw conclusions, and learn. Be curious.

Expected output
7.38 miles is 11.88 kilometers
12.25 kilometers is 7.61 miles

Code

Sample Solution

kilometers = 12.25
miles = 7.38
miles_to_kilometers = ###
kilometers_to_miles = ###
print(miles, "miles
is", round(miles_to_kilometers, 2), "kilometers")
print(kilometers, "kilometers
is", round(kilometers_to_miles, 2), "miles")

1
2
3
4
5

LAB 7 Operators and expressions
Take a look at the following code: it reads a float value, puts it into a variable named x, and
prints the value of a variable named y. Your task is to complete the code in order to evaluate
the following expression:
3x3 – 2x2 + 3x – 1
The result should be assigned to y.
Remember that classical algebraic notation likes to omit the multiplication operator ‒ you need
to use it explicitly. Note how we change data type to make sure that x is of type float.
Keep your code clean and readable, and test it using the data we've provided, each time
assigning it to the x variable (by hardcoding it). Don't be discouraged by any initial failures. Be
persistent and inquisitive.

Sample input
x = 0
x = 1
x = -1

Sample output
y = -1.0
y = 3.0
y = -9.0

Code

Sample Solution

x = # Hardcode your test data here.
x = float(x)
Write your code here.
print("y =", y)

1
2
3
4
5
6
7

1
2
3

2.4 SECTION SUMMARY
1. A variable is a named location reserved to store values in the memory. A variable is created
or initialized automatically when you assign a value to it for the first time. (Section 2.4.1)
2. Each variable must have a unique name ‒ an identifier. A legal identifier name must be a
non-empty sequence of characters, must begin with the underscore(_), or a letter, and it
cannot be a Python keyword. The first character may be followed by underscores, letters, and
digits. Identifiers in Python are case-sensitive.
3. Python is a dynamically-typed language, which means you don't need to declare variables
in it. (Section 2.4.3) To assign values to variables, you can use a simple assignment operator
in the form of the equal (=) sign, i.e. var = 1.
4. You can also use compound assignment operators (shortcut operators) to modify values
assigned to variables, for example: var += 1, or var /= 5 * 2.
5. You can assign new values to already existing variables using the assignment operator or
one of the compound operators, for example:

6. You can combine text and variables using the + operator, and use the print() function to
output strings and variables, for example:

var = 2
print(var)
var = 3
print(var)
var += 1
print(var)

var = "007"
print("Agent " + var)

1
2
3
4

1
2
3
4

1
2
3
4
5

2.4 SECTION QUIZ
Question 1: What is the output of the following code?

3
2
5

Question 2: Which of the following variable names are illegal in
Python? (Select three answers)

my_var
m
101
averylongVariablename
m101
m 101
Del
del

Question 3: What is the output of the following snippet?

1
11
2

Question 4: What is the output of the following snippet?

var = 2
var = 3
print(var)

a = '1'
b = "1"
print(a + b)

a = 6
b = 3
a /= 2 * b
print(a)

1.0
1
9
6
6.0

Check

SECTION 2.5 – COMMENTS
In this section, we want to share with you a few comments on comments. You will learn here
why it is important to document your code, and why you should leave comments. You will also
learn how to do it, and when comments are considered good practice. Let's go!

1
2
3
4
5

6
7

2.5.1 Comments – why, when, and how?
You may want to put in a few words addressed not to Python but to humans, usually to explain
to other readers of the code how the tricks used in the code work, or the meanings of the
variables, and eventually, in order to keep stored information on who the author is and when
the program was written.
A remark inserted into the program, which is omitted at runtime, is called a comment.
How do you leave this kind of comment in the source code? It has to be done in a way that
won't force Python to interpret it as part of the code.
Whenever Python encounters a comment in your program, the comment is completely
transparent to it ‒ from Python's point of view, this is only one space (regardless of how long
the real comment is).
In Python, a comment is a piece of text that begins with a # (hash) sign and extends to the end
of the line.
If you want a comment that spans several lines, you have to put a hash in front of them all.
Just like here:

Responsible developers describe each important piece of code, for example, by explaining
the role of the variables. Although it must be stated that the best way of commenting variables
is to name them in an unambiguous manner.
For example, if a particular variable is designed to store an area of some unique square, the
name square_area will obviously be better than aunt_jane.
We say that the first name is self-commenting.

This program evaluates the hypotenuse c.
a and b are the lengths of the legs.
a = 3.0
b = 4.0
c = (a ** 2 + b ** 2) ** 0.5 # We use ** instead of a square
root.
print("c =", c)

1
2
3
4
5
6

1
2
3
4
5

2.5.2 Marking fragments of code
Comments may be useful in another respect ‒ you can use them to mark a piece of code that
currently isn't needed for whatever reason. Look at the following example, if
you uncomment the highlighted line, this will affect the output of the code:

This is often done during the testing of a program, in order to isolate the place where an error
might be hidden.
TIP
If you'd like to quickly comment or uncomment multiple lines of code, select the line(s) you
wish to modify and use the following keyboard shortcut: CTRL + / (Windows) or CMD + / (Mac
OS). It's a very useful trick, isn't it? Now experiment with the following code.

This is a test program.
x = 1
y = 2
y = y + x
print(x + y)

uncomment_me = 1
uncomment_me_too = 3
uncomment_me_also = 5
print(uncomment_me, uncomment_me_too, uncomment_me_also, sep="\n")

1

2
3
4
5
6

7

8

9

LAB 8 Comments
The code contains comments. Try to improve it: add or remove comments where you find it
appropriate (yes, sometimes removing a comment can make the code more readable), and
change variable names where you think this will improve code comprehension.
NOTE
Comments are very important. They are used not only to make your programs easier to
understand, but also to disable those pieces of code that are currently not needed (e.g.
when you need to test some parts of your code only, and ignore others). Good
programmers describe each important piece of code, and give self-commenting names to
variables, as sometimes it is simply much better to leave information in the code.
It's good to use readable variable names, and sometimes it's better to divide your code into
named pieces (e.g. functions). In some situations, it's a good idea to write the steps of
computations in a clearer way.
One more thing: it may happen that a comment contains a wrong or incorrect piece of
information ‒ you should never do that on purpose!

Code

#this program computes the number of seconds in a given number of
hours
this program was written two days ago
a = 2 # number of hours
seconds = 3600 # number of seconds in 1 hour
print("Hours: ", a) #printing the number of hours
print("Seconds in Hours: ", a * seconds) # printing the number
of seconds in a given number of hours
#here we should also print "Goodbye", but a programmer didn't have
time to write any code
#this is the end of the program that computes the number of
seconds in 3 hours

1
2
3
4
5

2.5 SECTION SUMMARY
1. Comments can be used to leave additional information in code. They are omitted at runtime.
The information left in the source code is addressed to human readers. In Python, a comment
is a piece of text that begins with #. The comment extends to the end of the line.
2. If you want to place a comment that spans several lines, you need to place # in front of them
all. Moreover, you can use a comment to mark a piece of code that is not needed at the
moment (see the last line of the following snippet), for example:

3. Whenever possible and justified, you should give self-commenting names to variables,
e.g. if you're using two variables to store the length and width of something, the variable
names length and width may be a better choice than myvar1 and myvar2.
4. It's important to use comments to make programs easier to understand, and to use readable
and meaningful variable names in code. However, it's equally important not to use variable
names that are confusing, or leave comments that contain wrong or incorrect information!
5. Comments can be important when you are reading your own code after some time (trust us,
developers do forget what their own code does), and when others are reading your code (they
can help them understand what your programs do and how they do it more quickly).

This program prints
an introduction to the screen.
print("Hello!") # Invoking the print() function
print("I'm Python.")

1
2
3

1
2
3
4
5

2.5 SECTION QUIZ
Question 1: What is the output of the following snippet?

Question 2: What will happen when you run the following code?

Check

print("String #1")
print("String #2")

This is
a multiline
comment. #
print("Hello!")

SECTION 2.6 – INTERACTION WITH THE USER
In this section, you will learn how to talk to a computer: you will familiarize yourself with
the input() function, perform type conversions, and learn how to use string operators.

1
2
3
4

1
2
3
4

2.6.1 The input() function
We're now going to introduce you to a completely new function, which seems to be a mirror
reflection of the good old print() function.
Why? Well, print() sends data to the console.
The new function gets data from it.
print() has no usable result. The meaning of the new function is to return a very usable
result.
The function is named input(). The name of the function says everything.
The input() function is able to read data entered by the user and to return the same data to
the running program.
The program can manipulate the data, making the code truly interactive.
Virtually all programs read and process data. A program which doesn't get a user's input is
a deaf program.
Take a look at our example:

It shows a very simple case of using the input() function.
NOTE

The program prompts the user to input some data from the console (most likely using
a keyboard, although it is also possible to input data using voice or image)
the input() function is invoked without arguments (this is the simplest way of using the
function); the function will switch the console to input mode; you'll see a blinking
cursor, and you'll be able to input some keystrokes, finishing off by hitting the Enter key;
all the inputted data will be sent to your program through the function's result;
note: you need to assign the result to a variable; this is crucial ‒ missing out this step will
cause the entered data to be lost;
then we use the print() function to output the data we get, with some additional
remarks.

Run the code and let the function show you what it can do for you.

print("Tell me anything...")
anything = input()
print("Hmm...", anything, "... Really?")

print("Tell me anything...")
anything = input()
print("Hmm...", anything, "... Really?")

1
2
3

2.6.2 The input() function with an argument
The input() function can do something else: it can prompt the user without any help
from print().
We've modified our example a bit, look at the code:

Note:

the input() function is invoked with one argument ‒ it's a string containing a message;
the message will be displayed on the console before the user is given an opportunity to
enter anything;
input() will then do its job.

This variant of the input() invocation simplifies the code and makes it clearer.

anything = input("Tell me anything...")
print("Hmm...", anything, "...Really?")

1
2
3
4

2.6.3 The result of the input() function
We've said it already, but it must be unambiguously stated once again: the result of the
input() function is a string.
A string containing all the characters the user enters from the keyboard. It is not an integer or a
float.
This means that you mustn't use it as an argument of any arithmetic operation, e.g. you
can't use this data to square it, divide it by anything, or divide anything by it.

anything = input("Enter a number: ")
something = anything ** 2.0
print(anything, "to the power of 2 is", something)

1
2
3
4
5

2.6.4 The input() function – prohibited operations
Look at the following code. Run it, enter any number, and press Enter.

What happens? Python should have given you the following output:
Traceback (most recent call last):
File ".main.py", line 4, in <module>
something = anything ** 2.0

TypeError: unsupported operand type(s) for ** or pow(): 'str' and
'float'

The last line of the sentence explains everything ‒ you tried to apply the ** operator
to 'str' (string) accompanied with 'float'.
This is prohibited.
This should be obvious – can you predict the value of "to be or not to be" raised to the
power of 2?
We can't. Python can't, either.
Have we fallen into a deadlock? Is there a solution to this issue? Of course there is.

Testing a TypeError message.
anything = input("Enter a number: ")
something = anything ** 2.0
print(anything, "to the power of 2 is", something)

1
2
3
4

2.6.5 Type casting (type conversions)
Python offers two simple functions to specify a type of data and solve this problem ‒ here they
are: int() and float().
Their names are self-commenting:

the int() function takes one argument (e.g. a string: int(string)) and tries to
convert it into an integer; if it fails, the whole program will fail too (there is a workaround
for this situation, but we'll show you this a little later);
the float() function takes one argument (e.g. a string: float(string)) and tries to
convert it into a float (the rest is the same).

This is very simple and very effective. Moreover, you can invoke any of the functions by
passing the input() results directly to them. There's no need to use any variable as an
intermediate storage.
We've implemented the idea ‒ take a look at the code.
Can you imagine how the string entered by the user flows from input() into print()?
Try to run the modified code. Don't forget to enter a valid number.
Check some different values, small and big, negative and positive. Zero is a good input, too.

anything = float(input("Enter a number: "))
something = anything ** 2.0
print(anything, "to the power of 2 is", something)

1
2
3
4
5

1
2
3
4

2.6.6 More about input() and type casting
Having a team consisting of the trio input() – int() – float() opens up lots of new
possibilities.
You'll eventually be able to write complete programs, accepting data in the form of numbers,
processing them and displaying the results.
Of course, these programs will be very primitive and not very usable, as they cannot make
decisions, and consequently are not able to react differently to different situations.
This is not really a problem, though; we'll show you how to overcome it soon.
Our next example refers to the earlier program to find the length of a hypotenuse. Let's run it
and make it able to read the lengths of the legs from the console.
Check out the code ‒ this is what it looks like now:

The program asks the user for the lengths of both legs, evaluates the hypotenuse and prints
the result. Run it and try to input some negative values.
The program, unfortunately, doesn't react to this obvious error. Let's ignore this weakness for
now. We'll come back to it soon.
Note that in the program that you can see, the hypo variable is used for only one purpose ‒ to
save the calculated value between the execution of the adjoining line of code.
As the print() function accepts an expression as its argument, you can remove the
variable from the code.
Just like this:

leg_a = float(input("Input first leg length: "))
leg_b = float(input("Input second leg length: "))
hypo = (leg_a**2 + leg_b**2) ** .5
print("Hypotenuse length is", hypo)

leg_a = float(input("Input first leg length: "))
leg_b = float(input("Input second leg length: "))
print("Hypotenuse length is", (leg_a**2 + leg_b**2) ** .5)

1
2

1
2
3
4
5

1
2
3

2.6.7 String operators
It's time to return to these two arithmetic operators: + and *.
We want to show you that they have a second function. They are able to do something more
than just add and multiply.
We've seen them in action where their arguments are numbers (floats or integers, it doesn't
matter).
Now we're going to show you that they can handle strings, too, albeit in a very specific way.
The + (plus) sign, when applied to two strings, becomes a concatenation operator:

It simply concatenates (glues) two strings into one. Of course, like its arithmetic sibling, it can
be used more than once in one expression, and in such a context it behaves according to left-
sided binding.
In contrast to its arithmetic sibling, the concatenation operator is not commutative, i.e. "ab"
+ "ba" is not the same as "ba" + "ab".
Don't forget ‒ if you want the + sign to be a concatenator, not an adder, you must ensure
that both its arguments are strings.
You cannot mix types here.
This simple program shows the + sign in its second use:

Note: using + to concatenate strings lets you construct the output in a more precise way than
with a pure print() function, even if enriched with the end= and sep= keyword arguments.
Run the code and see if the output matches your predictions.

Replication
The * (asterisk) sign, when applied to a string and number (or a number and string, as it
remains commutative in this position) becomes a replication operator:

It replicates the string the same number of times specified by the number.
For example:

"James" * 3 gives "JamesJamesJames"

string + string

fnam = input("May I have your first name, please? ")
lnam = input("May I have your last name, please? ")
print("Thank you.")
print("\nYour name is " + fnam + " " + lnam + ".")

string * number
number * string

1
2
3
4

3 * "an" gives "ananan"
5 * "2" (or "2" * 5) gives "22222" (not 10!)

REMEMBER
A number less than or equal to zero produces an empty string.
This simple program "draws" a rectangle, making use of an old operator (+) in a new role:

Note the way in which we've used the parentheses in the second line of the code.
Try practicing to create other shapes or your own artwork!

print("+" + 10 * "-" + "+")
print(("|" + " " * 10 + "|\n") * 5, end="")
print("+" + 10 * "-" + "+")

1
2

1
2
3
4

2.6.8 Type conversions once again

str()
You already know how to use the int() and float() functions to convert a string into a
number.
This type of conversion is not a one-way street. You can also convert a number into a string,
which is way easier and safer ‒ this kind of operation is always possible.
A function capable of doing that is called str():

To be honest, it can do much more than just transform numbers into strings, but that can wait
for later.

The right-angle triangle again
Here is our "right-angle triangle" program again:

We've modified it a bit to show you how the str() function works. Thanks to this, we
can pass the whole result to the print() function as one string, forgetting about the
commas.
You've made some serious strides on your way to Python programming.
You already know the basic data types, and a set of fundamental operators. You know how to
organize the output and how to get data from the user. These are very strong foundations for
Module 3. But before we move on to the next module, let's do a few labs, and recap all that
you've learned in this section.

str(number)

leg_a = float(input("Input first leg length: "))
leg_b = float(input("Input second leg length: "))
print("Hypotenuse length is " + str((leg_a**2 + leg_b**2) ** .5))

1
2
3
4
5
6
7
8

LAB 9 Simple input and output
Your task is to complete the code in order to evaluate the results of four basic arithmetic
operations.
The results have to be printed to the console.
You may not be able to protect the code from a user who wants to divide by zero. That's okay,
don't worry about it for now.
Test your code ‒ does it produce the results you expect?
We won't show you any test data ‒ that would be too simple.

Code

Hint
Sample Solution

input a float value for variable a here
input a float value for variable b here
output the result of addition here
output the result of subtraction here
output the result of multiplication here
output the result of division here
print("\nThat's all, folks!")

LAB 10 Operators and expressions
Your task is to complete the code in order to evaluate the following expression:

The result should be assigned to y. Be careful ‒ watch the operators and keep their priorities in
mind. Don't hesitate to use as many parentheses as you need.
You can use additional variables to shorten the expression (but it's not necessary). Test your
code carefully.

Sample input:
1

Expected output:
y = 0.6000000000000001

Sample input:
10

Expected output:
y = 0.09901951266867294

Sample input:
100

Expected output:
y = 0.009999000199950014

Sample input:
-5

Expected output:
y = -0.19258202567760344

Code

1
2
3
4

Sample Solution

x = float(input("Enter value for x: "))
Write your code here.
print("y =", y)

1
2
3
4
5

LAB 11 Operators and expressions 2
Your task is to prepare a simple code able to evaluate the end time of a period of time, given
as a number of minutes (it could be arbitrarily large). The start time is given as a pair of hours
(0..23) and minutes (0..59). The result has to be printed to the console.
For example, if an event starts at 12:17 and lasts 59 minutes, it will end at 13:16.
Don't worry about any imperfections in your code ‒ it's okay if it accepts an invalid time ‒ the
most important thing is that the code produces valid results for valid input data.
Test your code carefully. Hint: using the % operator may be the key to success.

Sample input:
12

17

59

Expected output:
13:16

Sample input:
23

58

642

Expected output:
10:40

Sample input:
0

1

2939

Expected output:
1:0

Code

Hint
Sample Solution

hour = int(input("Starting time (hours): "))
mins = int(input("Starting time (minutes): "))
dura = int(input("Event duration (minutes): "))
Write your code here.

1
2
3

1
2
3
4
5
6

1
2
3
4

1
2
3

2.6 SECTION SUMMARY
The print() function sends data to the console, while the input() function gets data
from the console.
The input() function comes with an optional parameter: the prompt string. It allows you to
write a message before the user input, e.g.:

When the input() function is called, the program's flow is stopped, the prompt symbol keeps
blinking (it prompts the user to take action when the console is switched to input mode) until
the user has entered an input and/or pressed the Enter key.
NOTE
You can test the functionality of the input() function in its full scope locally on your machine.
For resource optimization reasons, we have limited the maximum program execution time in
Edube to a few seconds. Go to the Sandbox, copy-paste the previous snippet, run the
program, and do nothing ‒ just wait a few seconds to see what happens. Your program should
be stopped automatically after a short moment. Now open IDLE, and run the same program
there ‒ can you see the difference?
Tip: this feature of the input() function can be used to prompt the user to end a program.
Look at the following code:

The result of the input() function is a string. You can add strings to each other using
the concatenation (+) operator. Check out this code:

You can also multiply (* ‒ replication) strings, e.g.:

name = input("Enter your name: ")
print("Hello, " + name + ". Nice to meet you!")

name = input("Enter your name: ")
print("Hello, " + name + ". Nice to meet you!")
print("\nPress Enter to end the program.")
input()
print("THE END.")

num_1 = input("Enter the first number: ") # Enter 12
num_2 = input("Enter the second number: ") # Enter 21
print(num_1 + num_2) # the program returns 1221

my_input = input("Enter something: ") # Example input: hello
print(my_input * 3) # Expected output: hellohellohello

1
2
3

1
2
3

2.6 SECTION QUIZ
Question 1: What is the output of the following snippet?

Question 2: What is the expected output of the following snippet?

Check

x = int(input("Enter a number: ")) # The user enters 2
print(x * "5")

x = input("Enter a number: ") # The user enters 2
print(type(x))

MODULE 3: BOOLEAN VALUES, CONDITIONAL
EXECUTION, LOOPS, LISTS AND LIST
PROCESSING, LOGICAL AND BITWISE
OPERATIONS

SECTION 3.1 – MAKING DECISIONS IN PYTHON
Welcome to Module three! In the first section, we will learn about conditional statements and
how to use them to make decisions in Python.

3.1.1 Questions and answers
A programmer writes a program and the program asks questions.
A computer executes the program and provides the answers. The program must be able
to react according to the received answers.
Fortunately, computers know only two kinds of answers:

yes, this is true;
no, this is false.

You will never get a response like Let me think...., I don't know, or Probably yes, but I don't
know for sure.
To ask questions, Python uses a set of very special operators. Let's go through them one
after another, illustrating their effects on some simple examples.

3.1.2 Comparison: equality operator
Question: are two values equal?
To ask this question, you use the == (equal equal) operator.
Don't forget this important distinction:

= is an assignment operator, e.g. a = b assigns a with the value of b;
== is the question are these values equal? so a == b compares a and b.

It is a binary operator with left-sided binding. It needs two arguments and checks if they
are equal.

3.1.3 Exercises
Now let's ask a few questions. Try to guess the answers.
Question 1: What is the result of the following comparison?
2 == 2

Question 2: What is the result of the following comparison?
2 == 2.

Question 3: What is the result of the following comparison?
1 == 2

Check

1
2
3
4
5

3.1.4 Operators

Equality: the equal to operator (==)
The == (equal to) operator compares the values of two operands. If they are equal, the result
of the comparison is True. If they are not equal, the result of the comparison is False.
Look at the equality following comparison – what is the result of this operation?
var == 0

Note that we cannot find the answer if we do not know what value is currently stored in the
variable var.
If the variable has been changed many times during the execution of your program, or its initial
value is entered from the console, the answer to this question can be given only by Python and
only at runtime.
Now imagine a programmer who suffers from insomnia, and has to count black and white
sheep separately as long as there are exactly twice as many black sheep as white ones.
The question will be as follows:
black_sheep == 2 * white_sheep

Due to the low priority of the == operator, the question shall be treated as equivalent to this
one:
black_sheep == (2 * white_sheep)

So, let's practice your understanding of the == operator now – can you guess the output of the
code?

Run the code and check if you're right.

Inequality: the not equal to operator (!=)
The != (not equal to) operator compares the values of two operands, too. Here is the
difference: if they are equal, the result of the comparison is False. If they are not equal, the
result of the comparison is True.
Now take a look at the following inequality comparison – can you guess the result of this
operation?
var = 0 # Assigning 0 to var

print(var != 0)

var = 1 # Assigning 1 to var

print(var != 0)

Run the code and check if you're right.

var = 0 # Assigning 0 to var
print(var == 0)
var = 1 # Assigning 1 to var
print(var == 0)

Comparison operators: greater than
You can also ask a comparison question using the > (greater than) operator.
If you want to know if there are more black sheep than white ones, you can write it as follows:
black_sheep > white_sheep # Greater than

True confirms it; False denies it.

Comparison operators: greater than or equal to
The greater than operator has another special, non-strict variant, but it's denoted differently
than in classical arithmetic notation: >= (greater than or equal to).
There are two subsequent signs, not one.
Both of these operators (strict and non-strict), as well as the two others discussed in the next
section, are binary operators with left-sided binding, and their priority is greater than that
shown by == and !=.
If we want to find out whether or not we have to wear a warm hat, we ask the following
question:
centigrade_outside >= 0.0. # Greater than or equal to

Comparison operators: less than/less than or equal to
As you've probably already guessed, the operators used in this case are: the < (less than)
operator and its non-strict sibling: <= (less than or equal to).
Look at this simple example:
current_velocity_mph < 85 # Less than

current_velocity_mph <= 85 # Less than or equal to

We're going to check if there's a risk of being fined by the highway police (the first question is
strict, the second isn't).

3.1.5 Making use of the answers
What can you do with the answer (i.e. the result of a comparison operation) you get from the
computer?
There are at least two possibilities: first, you can memorize it (store it in a variable) and make
use of it later. How do you do that? Well, you use an arbitrary variable like this:
answer = number_of_lions >= number_of_lionesses

The content of the variable will tell you the answer to the question asked.
The second possibility is more convenient and far more common: you can use the answer you
get to make a decision about the future of the program.
You need a special instruction for this purpose, and we'll discuss it very soon.
Now we need to update our priority table, and put all the new operators into it. It now looks as
follows:

PRIORITY OPERATOR
1 +, - unary
2 **
3 *, /, //, %
4 +, - binary
5 <, <=, >, >=
6 ==, !=

LAB 12 Variables ‒ Questions and answers
Using one of the comparison operators in Python, write a simple two-line program that takes
the parameter n as input, which is an integer, and prints False if n is less than 100,
and True if n is greater than or equal to 100.
Don't create any if blocks (we're going to talk about them very soon). Test your code using
the data we've provided for you.

Sample input:
55

Expected output:
False

Sample input:
99

Expected output:
False

Sample input:
100

Expected output:
True

Sample input:
101

Expected output:
True

Sample input:
-5

Expected output:
False

Sample input:
+123

Expected output:
True

Sample Solution

3.1.6 Conditions and conditional execution
You already know how to ask Python questions, but you still don't know how to make
reasonable use of the answers. You have to have a mechanism which will allow you to do
something if a condition is met, and not do it if it isn't.
It's just like in real life: you do certain things or you don't when a specific condition is met or
not, e.g. you go for a walk if the weather is good, or stay home if it's wet and cold.
To make such decisions, Python offers a special instruction. Due to its nature and its
application, it's called a conditional instruction (or conditional statement).
There are several variants of it. We'll start with the simplest, increasing the difficulty slowly.
The first form of a conditional statement is written very informally but figuratively:
if true_or_not:

 do_this_if_true

This conditional statement consists of the following, strictly necessary, elements in this and this
order only:

the if keyword;
one or more white spaces;
an expression (a question or an answer) whose value will be interpreted solely in terms
of True (when its value is non-zero) and False (when it is equal to zero);
a colon followed by a newline;
an indented instruction or set of instructions (at least one instruction is absolutely
required); the indentation may be achieved in two ways – by inserting a particular
number of spaces (the recommendation is to use four spaces of indentation), or by
using the tab character; note: if there is more than one instruction in the indented part,
the indentation should be the same in all lines; even though it may look the same if you
use tabs mixed with spaces, it's important to make all indentations exactly the same –
Python 3 does not allow the mixing of spaces and tabs for indentation.

How does that statement work?

If the true_or_not expression represents the truth (i.e. its value is not equal to
zero), the indented statement(s) will be executed;
if the true_or_not expression does not represent the truth (i.e. its value is equal to
zero), the indented statement(s) will be omitted (ignored), and the next executed
instruction will be the one after the original indentation level.

In real life, we often express a desire:
if the weather is good, we'll go for a walk
then, we'll have lunch
As you can see, having lunch is not a conditional activity and doesn't depend on the
weather.
Knowing what conditions influence our behavior, and assuming that we have the
parameterless functions go_for_a_walk() and have_lunch(), we can write the following
snippet:

1
2
3
4

1
2
3

1
2
3
4
5
6

Conditional execution: the if statement
If a certain sleepless Python developer falls asleep when he or she counts 120 sheep, and the
sleep-inducing procedure may be implemented as a special function
named sleep_and_dream(), the whole code takes the following shape:

You can read it as: if sheep_counter is greater than or equal to 120, then fall asleep and
dream (i.e. execute the sleep_and_dream function.)
We've said that conditionally executed statements have to be indented. This creates a
very legible structure, clearly demonstrating all possible execution paths in the code.
Take a look at the following code:

As you can see, making a bed, taking a shower and falling asleep and dreaming are
all executed conditionally – when sheep_counter reaches the desired limit.
Feeding the sheepdogs, however, is always done (i.e. the feed_the_sheepdogs() function
is not indented and does not belong to the if block, which means it is always executed.)
Now we're going to discuss another variant of the conditional statement, which also allows you
to perform an additional action when the condition is not met.

Conditional execution: the if-else statement
We started out with a simple phrase which read: If the weather is good, we will go for a walk.
Note: there is not a word about what will happen if the weather is bad. We only know that we
won't go outdoors, but what we could do instead is not known. We may want to plan something
in case of bad weather, too.
We can say, for example: If the weather is good, we will go for a walk, otherwise we will go to a
theater.
Now we know what we'll do if the conditions are met, and we know what we'll do if not
everything goes our way. In other words, we have a "Plan B".
Python allows us to express such alternative plans. This is done with a second, slightly more
complex form of the conditional statement, the if-else statement:

if the_weather_is_good:
 go_for_a_walk()
have_lunch()

if sheep_counter >= 120: # Evaluate a test expression
 sleep_and_dream() # Execute if test expression is True

if sheep_counter >= 120:
 make_a_bed()
 take_a_shower()
 sleep_and_dream()
feed_the_sheepdogs()

1
2
3
4
5

1
2
3
4
5
6

1
2
3
4
5
6
7
8

Thus, there is a new word: else – this is a keyword.
The part of the code which begins with else says what to do if the condition specified for
the if is not met (note the colon after the word).
The if-else execution goes as follows:

if the condition evaluates to True (its value is not equal to zero),
the perform_if_condition_true statement is executed, and the conditional
statement comes to an end;
if the condition evaluates to False (it is equal to zero),
the perform_if_condition_false statement is executed, and the conditional
statement comes to an end.

The if-else statement: more conditional execution
By using this form of conditional statement, we can describe our plans as follows:

If the weather is good, we'll go for a walk. Otherwise, we'll go to a theater. No matter if the
weather is good or bad, we'll have lunch afterwards (after the walk or after going to the
theater).
Everything we've said about indentation works in the same manner inside the else branch:

Nested if-else statements
Now let's discuss two special cases of the conditional statement.
First, consider the case where the instruction placed after the if is another if.

if true_or_false_condition:
 perform_if_condition_true
else:
 perform_if_condition_false

if the_weather_is_good:
 go_for_a_walk()
else:
 go_to_a_theater()
have_lunch()

if the_weather_is_good:
 go_for_a_walk()
 have_fun()
else:
 go_to_a_theater()
 enjoy_the_movie()
have_lunch()

1
2
3
4
5
6
7
8
9
10
11

Read what we have planned for this Sunday. If the weather is fine, we'll go for a walk. If we find
a nice restaurant, we'll have lunch there. Otherwise, we'll eat a sandwich. If the weather is
poor, we'll go to the theater. If there are no tickets, we'll go shopping in the nearest mall.
Let's write the same in Python. Consider carefully the code here:

Here are two important points:

this use of the if statement is known as nesting; remember that every else refers to
the if which lies at the same indentation level; you need to know this to determine
how the ifs and elses pair up;
consider how the indentation improves readability, and makes the code easier to
understand and trace.

The elif statement
The second special case introduces another new Python keyword: elif. As you probably
suspect, it's a shorter form of else if.
elif is used to check more than just one condition, and to stop when the first statement
which is true is found.
Our next example resembles nesting, but the similarities are very slight. Again, we'll change
our plans and express them as follows: If the weather is fine, we'll go for a walk, otherwise if
we get tickets, we'll go to the theater, otherwise if there are free tables at the restaurant, we'll
go for lunch; if all else fails, we'll stay home and play chess.
Have you noticed how many times we've used the word otherwise? This is the stage where
the elif keyword plays its role.
Let's write the same scenario using Python:

if the_weather_is_good:
 if nice_restaurant_is_found:
 have_lunch()
 else:
 eat_a_sandwich()
else:
 if tickets_are_available:
 go_to_the_theater()
 else:
 go_shopping()

1
2
3
4
5
6
7
8
9

The way to assemble subsequent if-elif-else statements is sometimes called a cascade.
Notice again how the indentation improves the readability of the code.
Some additional attention has to be paid in this case:

you mustn't use else without a preceding if;
else is always the last branch of the cascade, regardless of whether you've
used elif or not;
else is an optional part of the cascade, and may be omitted;
if there is an else branch in the cascade, only one of all the branches is executed;
if there is no else branch, it's possible that none of the available branches is executed.

This may sound a little puzzling, but hopefully some simple examples will help shed more light.

if the_weather_is_good:
 go_for_a_walk()
elif tickets_are_available:
 go_to_the_theater()
elif table_is_available:
 go_for_lunch()
else:
 play_chess_at_home()

1
2
3
4
5
6
7
8
9
10
11

1
2
3
4
5
6
7
8
9

3.1.7 Analyzing code samples
Now we're going to show you some simple yet complete programs. We won't explain them in
detail, because we consider the comments (and the variable names) inside the code to be
sufficient guides.
All the programs solve the same problem – they find the largest of several numbers and
print it out.

Example 1:
We'll start with the simplest case – how to identify the larger of two numbers:

This snippet should be clear – it reads two integer values, compares them, and finds which is
the larger.

Example 2:
Now we're going to show you one intriguing fact. Python has an interesting feature – look at
the following code:

Note: if any of the if-elif-else branches contains just one instruction, you may code it in a
more comprehensive form (you don't need to make an indented line after the keyword, but just
continue the line after the colon).
This style, however, may be misleading, and we're not going to use it in our future programs,
but it's definitely worth knowing if you want to read and understand someone else's programs.
There are no other differences in the code.

Example 3:

Read two numbers
number1 = int(input("Enter the first number: "))
number2 = int(input("Enter the second number: "))
Choose the larger number
if number1 > number2:
 larger_number = number1
else:
 larger_number = number2
Print the result
print("The larger number is:", larger_number)

Read two numbers
number1 = int(input("Enter the first number: "))
number2 = int(input("Enter the second number: "))
Choose the larger number
if number1 > number2: larger_number = number1
else: larger_number = number2
Print the result
print("The larger number is:", larger_number)

1
2
3
4
5
6
7
8
9

10
11
12
13

14
15
16
17
18
19

It's time to complicate the code – let's find the largest of three numbers. Will it enlarge the
code? A bit.
We assume that the first value is the largest. Then we verify this hypothesis with the two
remaining values.
Look at the following code:

This method is significantly simpler than trying to find the largest number all at once, by
comparing all possible pairs of numbers (i.e. first with second, second with third, third with
first). Try to rebuild the code for yourself.

Read three numbers
number1 = int(input("Enter the first number: "))
number2 = int(input("Enter the second number: "))
number3 = int(input("Enter the third number: "))
We temporarily assume that the first number
is the largest one.
We will verify this soon.
largest_number = number1
We check if the second number is larger than the current
largest_number
and update the largest_number if needed.
if number2 > largest_number:
 largest_number = number2
We check if the third number is larger than the current
largest_number
and update the largest_number if needed.
if number3 > largest_number:
 largest_number = number3
Print the result
print("The largest number is:", largest_number)

3.1.8 Pseudocode and introduction to loops
You should now be able to write a program which finds the largest of four, five, six, or even ten
numbers.
You already know the scheme, so extending the size of the problem will not be particularly
complex.
But what happens if we ask you to write a program that finds the largest of two hundred
numbers? Can you imagine the code?
You'll need two hundred variables. If two hundred variables isn't bad enough, try to imagine
searching for the largest of a million numbers.
Imagine a code that contains 199 conditional statements and two hundred invocations of
the input() function. Luckily, you don't need to deal with that. There's a simpler approach.

We'll ignore the requirements of Python syntax for now, and try to analyze the problem without
thinking about the real programming. In other words, we'll try to write the algorithm, and when
we're happy with it, we'll implement it.
In this case, we'll use a kind of notation which is not an actual programming language (it can
be neither compiled nor executed), but it is formalized, concise and readable. It's
called pseudocode.
Let's look at our pseudocode:

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9
10

What's happening in it?
Firstly, we can simplify the program if, at the very beginning of the code, we assign the
variable largest_number with a value which will be smaller than any of the entered
numbers. We'll use -999999999 for that purpose.
Secondly, we assume that our algorithm will not know in advance how many numbers will be
delivered to the program. We expect that the user will enter as many numbers as she/he wants
– the algorithm will work well with one hundred and with one thousand numbers. How do we do
that?
We make a deal with the user: when the value -1 is entered, it will be a sign that there are no
more data and the program should end its work.
Otherwise, if the entered value is not equal to -1, the program will read another number, and so
on.
The trick is based on the assumption that any part of the code can be performed more than
once – precisely, as many times as needed.
Performing a certain part of the code more than once is called a loop. The meaning of this
term is probably obvious to you.
Lines 02 through 08 make a loop. We'll pass through them as many times as needed to
review all the entered values.
Can you use a similar structure in a program written in Python? Yes, you can.
EXTRA
Python often comes with a lot of built-in functions that will do the work for you. For example, to
find the largest number of all, you can use a Python built-in function called max(). You can use
it with multiple arguments. Analyze the following code:

largest_number = -999999999
number = int(input())
if number == -1:
 print(largest_number)
 exit()
if number > largest_number:
 largest_number = number
Go to line 02

Read three numbers.
number1 = int(input("Enter the first number: "))
number2 = int(input("Enter the second number: "))
number3 = int(input("Enter the third number: "))
Check which one of the numbers is the greatest
and pass it to the largest_number variable.
largest_number = max(number1, number2, number3)
Print the result.
print("The largest number is:", largest_number)

By the same fashion, you can use the min() function to return the lowest number. You can
rebuild this code and experiment with it in the Sandbox.
We're going to talk about these (and many other) functions soon. For the time being, our focus
will be on conditional execution and loops to let you gain more confidence in programming and
teach you the skills that will let you fully understand and apply the two concepts in your code.
So, for now, we're not taking any shortcuts.

LAB 13 Comparison operators and conditional execution
Spathiphyllum, more commonly known as a peace lily or white sail plant, is one of the most
popular indoor houseplants that filters out harmful toxins from the air. Some of the toxins that it
neutralizes include benzene, formaldehyde, and ammonia.
Imagine that your computer program loves these plants. Whenever it receives an input in the
form of the word Spathiphyllum, it involuntarily shouts to the console the following
string: "Spathiphyllum is the best plant ever!"
Write a program that utilizes the concept of conditional execution, takes a string as input, and:

prints the sentence "Yes – Spathiphyllum is the best plant ever!" to the
screen if the inputted string is "Spathiphyllum" (upper-case)
prints "No, I want a big Spathiphyllum!" if the inputted string
is "spathiphyllum" (lower-case)
prints "Spathiphyllum! Not [input]!" otherwise. Note: [input] is the string
taken as input.

Test your code using the data we've provided for you. And get yourself a Spathiphyllum, too!

Sample input:
spathiphyllum

Expected output:
No, I want a big Spathiphyllum!

Sample input:
pelargonium

Expected output:
Spathiphyllum! Not pelargonium!

Sample input:
Spathiphyllum

Expected output:
Yes – Spathiphyllum is the best plant ever!

Sample Solution

https://upload.wikimedia.org/wikipedia/commons/b/bd/Spathiphyllum_cochlearispathum_RTBG.jpg

LAB 14 Essentials of the if-else statement
Once upon a time there was a land – a land of milk and honey, inhabited by happy and
prosperous people. The people paid taxes, of course – their happiness had limits. The most
important tax, called the Personal Income Tax (PIT for short) had to be paid once a year, and
was evaluated using the following rule:

if the citizen's income was not higher than 85,528 thalers, the tax was equal to 18% of
the income minus 556 thalers and 2 cents (this was what they called tax relief)
if the income was higher than this amount, the tax was equal to 14,839 thalers and 2
cents, plus 32% of the surplus over 85,528 thalers.

Your task is to write a tax calculator.

It should accept one floating-point value: the income.
Next, it should print the calculated tax, rounded to full thalers. There's a function
named round() which will do the rounding for you – you'll find it in the following
skeleton code.

Note: this happy country never returned any money to its citizens. If the calculated tax was less
than zero, it would only mean no tax at all (the tax was equal to zero). Take this into
consideration during your calculations.
Look at the code – it only reads one input value and outputs a result, so you need to complete
it with some smart calculations.
Test your code using the data we've provided.

Sample input:
10000

Expected output:
The tax is: 1244.0 thalers

Sample input:
100000

Expected output:
The tax is: 19470.0 thalers

Sample input:
1000

Expected output:
The tax is: 0.0 thalers

Sample input:
-100

Expected output:

1
2
3
4
5
6
7

The tax is: 0.0 thalers

Code

Sample Solution

income = float(input("Enter the annual income: "))
if income < 85528:
 tax = income * 0.18 – 556.02
Write the rest of your code here.
tax = round(tax, 0)
print("The tax is:", tax, "thalers")

LAB 15 Essentials of the if-elif-else statement
As you surely know, due to some astronomical reasons, years may be leap or common. The
former are 366 days long, while the latter are 365 days long.
Since the introduction of the Gregorian calendar (in 1582), the following rule is used to
determine the kind of year:

if the year number isn't divisible by four, it's a common year;
otherwise, if the year number isn't divisible by 100, it's a leap year;
otherwise, if the year number isn't divisible by 400, it's a common year;
otherwise, it's a leap year.

Look at the following code – it only reads a year number, and needs to be completed with the
instructions implementing the test we've just described.
The code should output one of two possible messages, which are Leap year or Common
year, depending on the value entered.
It would be good to verify if the entered year falls into the Gregorian era, and output a warning
otherwise: Not within the Gregorian calendar period. Tip: use
the != and % operators.
Test your code using the data we've provided.

Sample input:
2000

Expected output:
Leap year

Sample input:
2015

Expected output:
Common year

Sample input:
1999

Expected output:
Common year

Sample input:
1996

Expected output:
Leap year

Sample input:
1580

1
2
3
4
5
6

Expected output:
Not within the Gregorian calendar period

Code

Sample Solution

year = int(input("Enter a year: "))
if year < 1582:
print("Not within the Gregorian calendar period")
else:
 # Write the if-elif-elif-else block here.

1
2
3

4

3.1 SECTION SUMMARY
1. The comparison (otherwise known as relational) operators are used to compare values.
The following table illustrates how the comparison operators work, assuming that x = 0, y =
1, and z = 0:

OPERATOR DESCRIPTION EXAMPLE

== returns True if operands' values are equal, and False otherwise

x == y
#False
x == z #
True

!= returns True if operands' values are not equal,
and False otherwise

x != y #
True
x != z #
False

> True if the left operand's value is greater than the right operand's
value, and False otherwise

x > y #
False
y > z #
True

< True if the left operand's value is less than the right operand's
value, and False otherwise

x < y #
True
y < z #
False

>= True if the left operand's value is greater than or equal to the right
operand's value, and False otherwise

x >= y #
False
x >= z #
True
y >= z #
True

<= True if the left operand's value is less than or equal to the right
operand's value, and False otherwise

x <= y #
True
x <= z #
True
y <= z #
False

2. When you want to execute some code only if a certain condition is met, you can use
a conditional statement:
a single if statement, e.g.:

x = 10
if x == 10: # condition
 print("x is equal to 10") # Executed if the condition is
True.

1
2
3

4
5

6
7

8

1
2
3

4
5

6

1
2
3

4
5

6
7

8

a series of if statements, e.g.:

Each if statement is tested separately.
an if-else statement, e.g.:

a series of if statements followed by an else, e.g.:

Each if is tested separately. The body of else is executed if the last if is False.

The if-elif-else statement, e.g.:

x = 10
if x > 5: # condition one
 print("x is greater than 5") # Executed if condition one is
True.
if x < 10: # condition two
 print("x is less than 10") # Executed if condition two is
True.
if x == 10: # condition three
 print("x is equal to 10") # Executed if condition three is
True.

x = 10
if x < 10: # condition
 print("x is less than 10") # Executed if the condition is
True.
else:
 print("x is greater than or equal to 10") # Executed if the
condition is False.

x = 10
if x > 5: # condition one
 print("x is greater than 5") # Executed if condition one is
True.
if x < 10: # condition two
 print("x is less than 10") # Executed if condition two is
True.
if x == 10: # condition three
 print("x is equal to 10") # Executed if condition three is
True.

1
2
3
4
5
6
7
8
9
10
11
12

1
2
3
4
5
6
7
8
9
10
11

If the condition for if is False, the program checks the conditions of the
subsequent elif blocks – the first elif block that is True is executed. If all the conditions
are False, the else block will be executed.

Nested conditional statements, e.g.:

x = 10
if x == 10: # True
 print("x == 10")
if x > 15: # False
 print("x > 15")
elif x > 10: # False
 print("x > 10")
elif x > 5: # True
 print("x > 5")
else:
 print("else will not be executed")

x = 10
if x > 5: # True
 if x == 6: # False
 print("nested: x == 6")
 elif x == 10: # True
 print("nested: x == 10")
 else:
 print("nested: else")
else:
 print("else")

3.1 SECTION QUIZ
Question 1: What is the output of the following snippet?
x = 5

y = 10

z = 8

print(x > y)

print(y > z)

Question 2: What is the output of the following snippet?
x, y, z = 5, 10, 8

print(x > z)

print((y – 5) == x)

Question 3: What is the output of the following snippet?
x, y, z = 5, 10, 8

x, y, z = z, y, x

print(x > z)

print((y – 5) == x)

Question 4: What is the output of the following snippet?
x = 10

if x == 10:

 print(x == 10)

if x > 5:

 print(x > 5)

if x < 10:

 print(x < 10)

else:

 print("else")

Question 5: What is the output of the following snippet?
x = "1"

if x == 1:

 print("one")

elif x == "1":

 if int(x) > 1:

 print("two")

 elif int(x) < 1:

 print("three")

 else:

 print("four")

if int(x) == 1:

 print("five")

else:

 print("six")

Question 6: What is the output of the following snippet?
x = 1

y = 1.0

z = "1"

if x == y:

 print("one")

if y == int(z):

 print("two")

elif x == y:

 print("three")

else:

 print("four")

Check

SECTION 3.2 – LOOPS IN PYTHON
Here you will learn about loops in Python, and specifically – the while and for loops. You will
learn how to create (and avoid falling into) infinite loops, how to exit loops, and skip particular
loop iterations. Ready?

3.2.1 Looping your code with while
Do you agree with the following statement?
while there is something to do

 do it

Note that this record also declares that if there is nothing to do, nothing at all will happen.
In general, in Python, a loop can be represented as follows:
while

 instruction

If you notice some similarities to the if instruction, that's quite all right. Indeed, the syntactic
difference is only one: you use the word while instead of the word if.
The semantic difference is more important: when the condition is met, if performs its
statements only once; while repeats the execution as long as the condition evaluates to
True.
Note: all the rules regarding indentation are applicable here, too. We'll show you this soon.
Look at the following algorithm:
while conditional_expression:

 instruction_one

 instruction_two

 instruction_three

 :

 :

 instruction_n

It is now important to remember that:

if you want to execute more than one statement inside one while loop, you must (as
with if) indent all the instructions in the same way;
an instruction or set of instructions executed inside the while loop is called the loop's
body;
if the condition is False (equal to zero) as early as when it is tested for the first time, the
body is not executed even once (note the analogy of not having to do anything if there is
nothing to do);
the body should be able to change the condition's value, because if the condition
is True at the beginning, the body might run continuously to infinity – notice that doing a
thing usually decreases the number of things to do).

1
2
3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

3.2.2 An infinite loop
An infinite loop, also called an endless loop, is a sequence of instructions in a program which
repeat indefinitely (loop endlessly.)
Here's an example of a loop that is not able to finish its execution:

This loop will infinitely print "I'm stuck inside a loop." on the screen.
NOTE
If you want to get the best learning experience from seeing how an infinite loop behaves,
launch IDLE, create a New File, copy-paste the previous code, save your file, and run the
program. What you will see is the never-ending sequence of "I'm stuck inside a
loop." strings printed to the Python console window. To terminate your program, just
press Ctrl-C (or Ctrl-Break on some computers). This will cause
a KeyboardInterrupt exception and let your program get out of the loop. We'll talk about it
later in the course.
Let's go back to the sketch of the algorithm we showed you recently. We're going to show you
how to use this newly learned loop to find the largest number from a large set of entered data.
Analyze the program carefully. See where the loop starts (line 8). Locate the loop's body and
find out how the body is exited:

Check how this code implements the algorithm we showed you earlier.

while True:
 print("I'm stuck inside a loop.")

Store the current largest number here.
largest_number = -999999999
Input the first value.
number = int(input("Enter a number or type -1 to stop: "))
If the number is not equal to -1, continue.
while number != -1:
 # Is number larger than largest_number?
 if number > largest_number:
 # Yes, update largest_number.
 largest_number = number
 # Input the next number.
 number = int(input("Enter a number or type -1 to stop: "))
Print the largest number.
print("The largest number is:", largest_number)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

1
2
3
4
5
6

3.2.3 The while loop: more examples
Let's look at another example employing the while loop. Follow the comments to find out the
idea and the solution.

Certain expressions can be simplified without changing the program's behavior.
Try to recall how Python interprets the truth of a condition, and note that these two forms are
equivalent:
while number != 0: and while number:.
The condition that checks if a number is odd can be coded in these equivalent forms, too:
if number % 2 == 1: and if number % 2:.

Using a counter variable to exit a loop
Look at the following snippet:

This code is intended to print the string "Inside the loop." and the value stored in
the counter variable during a given loop exactly five times. Once the condition has not been

A program that reads a sequence of numbers
and counts how many numbers are even and how many are odd.
The program terminates when zero is entered.
odd_numbers = 0
even_numbers = 0
Read the first number.
number = int(input("Enter a number or type 0 to stop: "))
0 terminates execution.
while number != 0:
 # Check if the number is odd.
 if number % 2 == 1:
 # Increase the odd_numbers counter.
 odd_numbers += 1
 else:
 # Increase the even_numbers counter.
 even_numbers += 1
 # Read the next number.
 number = int(input("Enter a number or type 0 to stop: "))
Print results.
print("Odd numbers count:", odd_numbers)
print("Even numbers count:", even_numbers)

counter = 5
while counter != 0:
 print("Inside the loop.", counter)
 counter -= 1
print("Outside the loop.", counter)

1
2
3
4
5
6

met (the counter variable has reached 0), the loop is exited, and the message "Outside
the loop." as well as the value stored in counter is printed.
But there's one thing that can be written more compactly – the condition of the while loop.
Can you see the difference?

Is it more compact than previously? A bit. Is it more legible? That's disputable.
REMEMBER
Don't feel obliged to code your programs in a way that is always the shortest and the most
compact. Readability may be a more important factor. Keep your code ready for a new
programmer.

counter = 5
while counter:
 print("Inside the loop.", counter)
 counter -= 1
print("Outside the loop.", counter)

1
2
3
4
5
6
7
8
9
10
11
12

LAB 16 Guess the secret number
A junior magician has picked a secret number. He has hidden it in a variable
named secret_number. He wants everyone who runs his program to play the Guess the
secret number game, and guess what number he has picked for them. Those who don't guess
the number will be stuck in an endless loop forever! Unfortunately, he does not know how to
complete the code.
Your task is to help the magician complete the code in such a way so that the code:

will ask the user to enter an integer number;
will use a while loop;
will check whether the number entered by the user is the same as the number picked by
the magician. If the number chosen by the user is different than the magician's secret
number, the user should see the message "Ha ha! You're stuck in my
loop!" and be prompted to enter a number again. If the number entered by the user
matches the number picked by the magician, the number should be printed to the
screen, and the magician should say the following words: "Well done, muggle!
You are free now."

The magician is counting on you! Don't disappoint him.
EXTRA
By the way, look at the print() function. The way we've used it here is called multi-line
printing. You can use triple quotes to print strings on multiple lines in order to make text easier
to read, or create a special text-based design. Experiment with it.

Code

Hint
Sample Solution

secret_number = 777
print(
"""
+================================+
| Welcome to my game, muggle! |
| Enter an integer number |
| and guess what number I've |
| picked for you. |
| So, what is the secret number? |
+================================+
""")

1
2
3
4
5

1
2
3
4

3.2.4 Looping your code with for
Another kind of loop available in Python comes from the observation that sometimes it's more
important to count the "turns" of the loop than to check the conditions.
Imagine that a loop's body needs to be executed exactly one hundred times. If you would like
to use the while loop to do it, it may look like this:

It would be nice if somebody could do this boring counting for you. Is that possible?
Of course it is – there's a special loop for these kinds of tasks, and it is named for.
Actually, the for loop is designed to do more complicated tasks – it can "browse" large
collections of data item by item. We'll show you how to do that soon, but right now we're
going to present a simpler variant of its application.
Take a look at the snippet:

There are some new elements. Let us tell you about them:

the for keyword opens the for loop; note – there's no condition after it; you don't have to
think about conditions, as they're checked internally, without any intervention;
any variable after the for keyword is the control variable of the loop; it counts the
loop's turns, and does it automatically;
the in keyword introduces a syntax element describing the range of possible values
being assigned to the control variable;
the range() function (this is a very special function) is responsible for generating all the
desired values of the control variable; in our example, the function will create (we can
even say that it will feed the loop with) subsequent values from the following set: 0, 1, 2
.. 97, 98, 99; note: in this case, the range() function starts its job from 0 and finishes it
one step (one integer number) before the value of its argument;
note the pass keyword inside the loop body – it does nothing at all; it's an empty
instruction – we put it here because the for loop's syntax demands at least one
instruction inside the body (by the way – if, elif, else and while express the same
thing)

Our next examples will be a bit more modest in the number of loop repetitions.
Take a look at the following snippet. Can you predict its output?

i = 0
while i < 100:
 # do_something()
 i += 1

for i in range(100):
 # do_something()
 pass

1
2
3

1
2
3

Run the code to check if you were right.
NOTE

the loop has been executed ten times (it's the range() function's argument)
the last control variable's value is 9 (not 10, as it starts from 0, not from 1)

The range() function invocation may be equipped with two arguments, not just one:

In this case, the first argument determines the initial (first) value of the control variable.
The last argument shows the first value the control variable will not be assigned.
Note: the range() function accepts only integers as its arguments, and generates
sequences of integers.
Can you guess the output of the program? Run it to check if you were right now, too.
The first value shown is 2 (taken from the range()'s first argument.)
The last is 7 (although the range()'s second argument is 8).

for i in range(10):
 print("The value of i is currently", i)

for i in range(2, 8):
 print("The value of i is currently", i)

1
2
3

1
2
3

1
2
3

3.2.5 More about the for loop and the range() function with
three arguments
The range() function may also accept three arguments – take a look at the following code.

The third argument is an increment – it's a value added to control the variable at every loop
turn (as you may suspect, the default value of the increment is 1).
Can you tell us how many lines will appear in the console and what values they will contain?
Run the program to find out if you're right.
You should be able to see the following lines in the console window:
The value of i is currently 2

The value of i is currently 5

Do you know why? The first argument passed to the range() function tells us what
the starting number of the sequence is (hence 2 in the output). The second argument tells the
function where to stop the sequence (the function generates numbers up to the number
indicated by the second argument, but does not include it). Finally, the third argument indicates
the step, which actually means the difference between each number in the sequence of
numbers generated by the function.
2 (starting number) → 5 (2 increment by 3 equals 5 – the number is within the range from 2 to
8) → 8 (5 increment by 3 equals 8 – the number is not within the range from 2 to 8, because
the stop parameter is not included in the sequence of numbers generated by the function.)
Note: if the set generated by the range() function is empty, the loop won't execute its body at
all.
Just like here – there will be no output:

 Note: the set generated by the range() has to be sorted in ascending order. There's no
way to force the range() to create a set in a different form when the range() function
accepts exactly two arguments. This means that the range()'s second argument must be
greater than the first.
Thus, there will be no output here, either:

Let's have a look at a short program whose task is to write some of the first powers of two:

for i in range(2, 8, 3):
 print("The value of i is currently", i)

for i in range(1, 1):
 print("The value of i is currently", i)

for i in range(2, 1):
 print("The value of i is currently", i)

1
2
3
4
5

The expo variable is used as a control variable for the loop, and indicates the current value of
the exponent. The exponentiation itself is replaced by multiplying by two. Since 20 is equal to
1, then 2 × 1 is equal to 21, 2 × 21 is equal to 22, and so on. What is the greatest exponent for
which our program still prints the result?
Run the code and check if the output matches your expectations.

power = 1
for expo in range(16):
 print("2 to the power of", expo, "is", power)
 power *= 2

1
2
3

4
5
6

LAB 17 Essentials of the for loop – counting mississippily
Do you know what Mississippi is? Well, it's the name of one of the states and rivers in the
United States. The Mississippi River is about 2,340 miles long, which makes it the second
longest river in the United States (the longest being the Missouri River). It's so long that a
single drop of water needs 90 days to travel its entire length!
The word Mississippi is also used for a slightly different purpose: to count mississippily.
If you're not familiar with the phrase, we're here to explain to you what it means: it's used to
count seconds.
The idea behind it is that adding the word Mississippi to a number when counting seconds
aloud makes them sound closer to clock-time, and therefore "one Mississippi, two Mississippi,
three Mississippi" will take approximately an actual three seconds of time! It's often used by
children playing hide-and-seek to make sure the seeker does an honest count.
Your task is very simple here: write a program that uses a for loop to "count mississippily" to
five. Having counted to five, the program should print to the screen the final message "Ready
or not, here I come!"
Use the skeleton we've provided for you.
EXTRA
Note that the code contains two elements which may not be fully clear to you at this moment:
the import time statement, and the sleep() method. We're going to talk about them soon.
For the time being, we'd just like you to know that we've imported the time module and used
the sleep() method to suspend the execution of each subsequent print() function inside
the for loop for one second, so that the message outputted to the console resembles an
actual counting. Don't worry – you'll soon learn more about modules and methods.

Expected output:
1 Mississippi

2 Mississippi

3 Mississippi

4 Mississippi

5 Mississippi

Code

Hint
Sample Solution

import time
Write a for loop that counts to five.
 # Body of the loop – print the loop iteration number and the
word "Mississippi".
 # Body of the loop – use: time.sleep(1)
Write a print function with the final message.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

3.2.5 The break and continue statements
So far, we've treated the body of the loop as an indivisible and inseparable sequence of
instructions that are performed completely at every turn of the loop. However, as a developer,
you could be faced with the following choices:

it appears that it's unnecessary to continue the loop as a whole; you should refrain from
further execution of the loop's body and go further;
it appears that you need to start the next turn of the loop without completing the
execution of the current turn.

Python provides two special instructions for the implementation of both these tasks. Let's say
for the sake of accuracy that their existence in the language is not necessary – an experienced
programmer is able to code any algorithm without these instructions. Such additions, which
don't improve the language's expressive power, but only simplify the developer's work, are
sometimes called syntactic candy, or syntactic sugar.
These two instructions are:

break – exits the loop immediately, and unconditionally ends the loop's operation; the
program begins to execute the nearest instruction after the loop's body;
continue – behaves as if the program has suddenly reached the end of the body; the
next turn is started and the condition expression is tested immediately.

Both these words are keywords.
Now we'll show you two simple examples to illustrate how the two instructions work. Look at
the following code. Run the program and analyze the output. Modify the code and experiment.

The break and continue statements: more examples

break – example

print("The break instruction:")
for i in range(1, 6):
 if i == 3:
 break
 print("Inside the loop.", i)
print("Outside the loop.")

continue – example

print("\nThe continue instruction:")
for i in range(1, 6):
 if i == 3:
 continue
 print("Inside the loop.", i)
print("Outside the loop.")

1
2
3
4
5

6
7
8
9
10
11
12
13
14
15

1
2
3
4
5
6
7
8
9
10
11
12
13

14
15
16
17
18
19

Let's return to our program that recognizes the largest among the entered numbers. We'll
convert it twice, using the break and continue instructions.
Analyze the code, and judge whether and how you would use either of them.
The break variant goes here:

Run it, test it, and experiment with it.
And now the continue variant:

Look carefully, the user enters the first number before the program enters the while loop. The
subsequent number is entered when the program is already in the loop.

largest_number = -99999999
counter = 0

while True:
 number = int(input("Enter a number or type -1 to end the
program: "))
 if number == -1:
 break
 counter += 1
 if number > largest_number:
 largest_number = number
if counter != 0:
 print("The largest number is", largest_number)
else:
 print("You haven't entered any number.")

largest_number = -99999999
counter = 0

number = int(input("Enter a number or type -1 to end program: "))

while number != -1:
 if number == -1:
 continue
 counter += 1

 if number > largest_number:
 largest_number = number
 number = int(input("Enter a number or type -1 to end the
program: "))

if counter:
 print("The largest number is", largest_number)
else:
 print("You haven't entered any number.")

Again – run the program, test it, and experiment with it.

LAB 18 The break statement – Stuck in a loop
The break statement is used to exit/terminate a loop.
Design a program that uses a while loop and continuously asks the user to enter a word
unless the user enters "chupacabra" as the secret exit word, in which case the
message "You've successfully left the loop." should be printed to the screen,
and the loop should terminate.
Don't print any of the words entered by the user. Use the concept of conditional execution and
the break statement.
Hint
Sample Solution

LAB 19 The continue statement – the Ugly Vowel Eater
The continue statement is used to skip the current block and move ahead to the next
iteration, without executing the statements inside the loop.
It can be used with both the while and for loops.
Your task here is very special: you must design a vowel eater! Write a program that uses:

a for loop;
the concept of conditional execution (if-elif-else)
the continue statement.

Your program must:

ask the user to enter a word;
use user_word = user_word.upper() to convert the word entered by the user to
upper case; we'll talk about string methods and the upper() method very soon – don't
worry;
use conditional execution and the continue statement to "eat" the following
vowels A, E, I, O, U from the inputted word;
print the uneaten letters to the screen, each one of them on a separate line.

Test your program with the data we've provided for you.

Sample input:
Gregory

Expected output:
G

R

G

R

Y

Sample input:
abstemious

Expected output:
B

S

T

M

S

1
2
3
4
5
6

Sample input:
IOUEA

Expected output:

Code

Hint
Sample Solution

Prompt the user to enter a word
and assign it to the user_word variable.

for letter in user_word:
 # Complete the body of the for loop.

LAB 20 The continue statement – the Pretty Vowel Eater
Your task here is even more special than before: you must redesign the (ugly) vowel eater from
the previous lab and create a better, upgraded (pretty) vowel eater! Write a program that uses:

a for loop;
the concept of conditional execution (if-elif-else)
the continue statement.

Your program must:

ask the user to enter a word;
use user_word = user_word.upper() to convert the word entered by the user to
upper case; we'll talk about string methods and the upper() method very soon – don't
worry;
use conditional execution and the continue statement to "eat" the following
vowels A, E, I, O, U from the inputted word;
assign the uneaten letters to the word_without_vowels variable and print the
variable to the screen.

Look at the following code. We've created word_without_vowels and assigned an empty
string to it. Use concatenation operation to ask Python to combine selected letters into a longer
string during subsequent loop turns, and assign it to the word_without_vowels variable.
Test your program with the data we've provided for you.

Sample input:
Gregory

Expected output:
GRGRY

Sample input:
abstemious

Expected output:
BSTMS

Sample input:
IOUEA

Expected output:

Code

1
2
3
4
5
6
7
8
9
10
11

Hint
Sample Solution

word_without_vowels = ""

Prompt the user to enter a word
and assign it to the user_word variable.

for letter in user_word:
 # Complete the body of the loop.

Print the word assigned to word_without_vowels.

1
2
3
4
5
6
7

3.2.6 The while loop and the else branch
Both loops, while and for, have one interesting (and rarely used) feature.
We'll show you how it works – try to judge for yourself if it's usable and whether you can live
without it or not.
In other words, try to convince yourself if the feature is valuable and useful, or is just syntactic
sugar.
Take a look at the following snippet. There's something strange at the end –
the else keyword.
As you may have suspected, loops may have the else branch too, like ifs.
The loop's else branch is always executed once, regardless of whether the loop has
entered its body or not.
Can you guess the output? Run the program to check if you were right.

Modify the snippet a bit so that the loop has no chance to execute its body even once:
The while's condition is False at the beginning – can you see it?
Run and test the program, and check whether the else branch has been executed or not.

i = 1
while i < 5:
 print(i)
 i += 1
else:
 print("else:", i)

1
2
3
4
5

1
2
3
4
5
6

3.2.7 The for loop and the else branch
for loops behave a bit differently – take a look at the following snippet and run it.

The output may be a bit surprising.
The i variable retains its last value.
Modify the code a bit to carry out one more experiment.

Can you guess the output?
The loop's body won't be executed here at all. Note: we've assigned the i variable before the
loop.
Run the program and check its output.
When the loop's body isn't executed, the control variable retains the value it had before the
loop.
Note: if the control variable doesn't exist before the loop starts, it won't exist when the
execution reaches the else branch.
How do you feel about this variant of else?
Soon we'll tell you about some other kinds of variables. Our current variables can only store
one value at a time, but there are variables that can do much more – they can store as many
values as you want. But let's do some labs, first.

for i in range(5):
 print(i)
else:
 print("else:", i)

i = 111
for i in range(2, 1):
 print(i)
else:
 print("else:", i)

LAB 21 Essentials of the while loop
Listen to this story: a boy and his father, a computer programmer, are playing with wooden
blocks. They are building a pyramid.
Their pyramid is a bit weird, as it is actually a pyramid-shaped wall – it's flat. The pyramid is
stacked according to one simple principle: each lower layer contains one block more than the
layer above.
The figure illustrates the rule used by the builders:

Your task is to write a program which reads the number of blocks the builders have, and
outputs the height of the pyramid that can be built using these blocks.
Note: the height is measured by the number of fully completed layers – if the builders don't
have a sufficient number of blocks and cannot complete the next layer, they finish their work
immediately.
Test your code using the data we've provided.

Sample input:
6

Expected output:
The height of the pyramid: 3

Sample input:
20

Expected output:
The height of the pyramid: 3

1
2
3
4
5
6

Sample input:
1000

Expected output:
The height of the pyramid: 44

Sample input:
2

Expected output:
The height of the pyramid: 1

Code

Hint
Sample Solution

blocks = int(input("Enter the number of blocks: "))
#
Write your code here.
#
print("The height of the pyramid:", height)

LAB 22 Collatz's hypothesis
In 1937, a German mathematician named Lothar Collatz formulated an intriguing hypothesis (it
still remains unproven) which can be described in the following way:
take any non-negative and non-zero integer number and name it c0;
if it's even, evaluate a new c0 as c0 ÷ 2;
otherwise, if it's odd, evaluate a new c0 as 3 × c0 + 1;
if c0 ≠ 1, go back to point 2.
The hypothesis says that regardless of the initial value of c0, it will always go to 1.
Of course, it's an extremely complex task to use a computer in order to prove the hypothesis
for any natural number (it may even require artificial intelligence), but you can use Python to
check some individual numbers. Maybe you'll even find the one which would disprove the
hypothesis.
Write a program which reads one natural number and executes these steps as long
as c0 remains different from 1. We also want you to count the steps needed to achieve the
goal. Your code should output all the intermediate values of c0, too.
Hint: the most important part of the problem is how to transform Collatz's idea into
a while loop – this is the key to success.
Test your code using the data we've provided.

Sample input:
15

Expected output:
46

46

70

35

106

53

160

80

40

20

10

5

16

8

4

2

1

steps = 17

Sample input:
16

Expected output:
8

4

2

1

steps = 4

Sample input:
1023

Expected output:
3070

1535

4606

2303

6910

3455

10366

5183

15550

7775

23326

11663

34990

17495

52486

26243

78730

39365

118096

59048

29524

14762

7381

22144

11072

5536

2768

1384

692

346

173

173

260

130

65

196

98

49

148

74

37

37

56

28

14

7

22

11

34

17

52

26

13

40

20

10

5

16

8

4

2

1

2

Hint
Sample Solution

1
2
3
4
5
6
7
8
9
10

1
2
3
4
5
6
7
8
9
10

1
2
3
4
5
6

3.2 SECTION SUMMARY
1. There are two types of loops in Python: while and for:
the while loop executes a statement or a set of statements as long as a specified boolean
condition is true, e.g.:

The for loop executes a set of statements many times; it's used to iterate over a sequence
(e.g. a list, a dictionary, a tuple, or a set – you will learn about them soon) or other iterable
objects (e.g. strings). You can use the for loop to iterate over a sequence of numbers using
the built-in range function. Look at the following examples:

2. You can use the break and continue statements to change the flow of a loop:
You use break to exit a loop, e.g.:

You use continue to skip the current iteration, and continue with the next iteration, e.g.:

Example 1
while True:
 print("Stuck in an infinite loop.")

Example 2
counter = 5
while counter > 2:
 print(counter)
 counter -= 1

Example 1
word = "Python"
for letter in word:
 print(letter, end="*")

Example 2
for i in range(1, 10):
 if i % 2 == 0:
 print(i)

text = "OpenEDG Python Institute"
for letter in text:
 if letter == "P":
 break
 print(letter, end="")

1
2
3
4
5
6

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1
2
3
4
5
6

3. The while and for loops can also have an else clause in Python. The else clause
executes after the loop finishes its execution as long as it has not been terminated by break,
e.g.:

4. The range() function generates a sequence of numbers. It accepts integers and returns
range objects. The syntax of range() looks as follows: range(start, stop, step),
where:

start is an optional parameter specifying the starting number of the sequence (0 by
default)
stop is an optional parameter specifying the end of the sequence generated (it is not
included),
and step is an optional parameter specifying the difference between the numbers in the
sequence (1 by default.)

Example code:

text = "pyxpyxpyx"
for letter in text:
 if letter == "x":
 continue
 print(letter, end="")

n = 0

while n != 3:
 print(n)
 n += 1
else:
 print(n, "else")

print()

for i in range(0, 3):
 print(i)
else:
 print(i, "else")

for i in range(3):
 print(i, end=" ") # Outputs: 0 1 2

for i in range(6, 1, -2):
 print(i, end=" ") # Outputs: 6, 4, 2

3.2 SECTION QUIZ
Question 1: Create a for loop that counts from 0 to 10, and prints odd numbers to the
screen. Use the following skeleton:
for i in range(1, 11):

 # Line of code.

 # Line of code.

Question 2: Create a while loop that counts from 0 to 10, and prints odd numbers to the
screen. Use the following skeleton:
x = 1

while x < 11:

 # Line of code.

 # Line of code.

 # Line of code.

Question 3: Create a program with a for loop and a break statement. The program should
iterate over characters in an email address, exit the loop when it reaches the @ symbol, and
print the part before @ on one line. Use the following skeleton:
for ch in "john.smith@pythoninstitute.org":

 if ch == "@":

 # Line of code.

 # Line of code.

Question 4: Create a program with a for loop and a continue statement. The program
should iterate over a string of digits, replace each 0 with x, and print the modified string to the
screen. Use the following skeleton:
for digit in "0165031806510":

 if digit == "0":

 # Line of code.

 # Line of code.

 # Line of code.

Question 5: What is the output of the following code?
n = 3

while n > 0:

 print(n + 1)

 n -= 1

else:

 print(n)

Question 6: What is the output of the following code?
n = range(4)

for num in n:

 print(num – 1)

else:

 print(num)

Question 7: What is the output of the following code?
for i in range(0, 6, 3):

 print(i)

Check

SECTION 3.3 – LOGIC AND BIT OPERATIONS IN PYTHON
In this section, you will learn about logical and bitwise operators in Python, and such concepts
as the truth table and bit shifting.

3.3.1 Computer logic
Have you noticed that the conditions we've used so far have been very simple, not to say, quite
primitive? The conditions we use in real life are much more complex. Let's look at this
sentence:
If we have some free time, and the weather is good, we will go for a walk.
We've used the conjunction and, which means that going for a walk depends on the
simultaneous fulfilment of these two conditions. In the language of logic, such a connection of
conditions is called a conjunction. And now another example:
If you are in the mall or I am in the mall, one of us will buy a gift for Mom.
The appearance of the word or means that the purchase depends on at least one of these
conditions. In logic, such a compound is called a disjunction.
It's clear that Python must have operators to build conjunctions and disjunctions. Without them,
the expressive power of the language would be substantially weakened. They're called logical
operators.

The and operator
One logical conjunction operator in Python is the word and. It's a binary operator with a
priority that is lower than the one expressed by the comparison operators. It allows us to
code complex conditions without the use of parentheses like this one:
counter > 0 and value == 100

The result provided by the and operator can be determined on the basis of the truth table.
If we consider the conjunction of A and B, the set of possible values of arguments and
corresponding values of the conjunction looks as follows:

ARGUMENT AARGUMENT B A AND B
False False False

False True False

True False False

True True True

The or operator
A disjunction operator is the word or. It's a binary operator with a lower priority than
and (just like + compared to). Its truth table is as follows:

ARGUMENT AARGUMENT B A OR B
False False False

False True True

True False True

True True True

The not operator

In addition, there's another operator that can be applied to the construction of conditions. It's
a unary operator performing a logical negation. Its operation is simple: it turns truth into
falsehood and falsehood into truth.
This operator is written as the word not, and its priority is very high: the same as the unary
+ and -. Its truth table is simple:

ARGUMENTNOT ARGUMENT
False True

True False

3.3.2 Logical expressions
Let's create a variable named var and assign 1 to it. The following conditions are pairwise
equivalent:
Example 1:

print(var > 0)

print(not (var <= 0))

Example 2:

print(var != 0)

print(not (var == 0))

You may be familiar with De Morgan's laws. They say that:
The negation of a conjunction is the disjunction of the negations.
The negation of a disjunction is the conjunction of the negations.
Let's write the same thing using Python:
not (p and q) == (not p) or (not q)

not (p or q) == (not p) and (not q)

Note how the parentheses have been used to code the expressions ‒ we put them there to
improve readability.
We should add that none of these two-argument operators can be used in the abbreviated
form known as op=. This exception is worth remembering.

3.3.3 Logical values vs. single bits
Logical operators take their arguments as a whole regardless of how many bits they contain.
The operators are aware only of the value: zero (when all the bits are reset) means False; not
zero (when at least one bit is set) means True.
The result of their operations is one of these values: False or True. This means that this
snippet will assign the value True to the j variable if i is not zero; otherwise, it will be False.
i = 1

j = not not i

3.3.4 Bitwise operators
However, there are four operators that allow you to manipulate single bits of data. They are
called bitwise operators.
They cover all the operations we mentioned before in the logical context, and one additional
operator. This is the xor (as in exclusive or) operator, and is denoted as ^ (caret).
Here are all of them:

& (ampersand) ‒ bitwise conjunction;
| (bar) ‒ bitwise disjunction;
~ (tilde) ‒ bitwise negation;
^ (caret) ‒ bitwise exclusive or (xor).

Bitwise operations (&, |, and ^)
ARGUMENT AARGUMENT B A & BA | BA ^ B
0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

Bitwise operations (~)
ARGUMENT ~ ARGUMENT
0 1

1 0
Let's make it easier:

& requires exactly two 1s to provide 1 as the result;
| requires at least one 1 to provide 1 as the result;
^ requires exactly one 1 to provide 1 as the result.

Let us add an important remark: the arguments of these operators must be integers; we must
not use floats here.
The difference in the operation of the logical and bit operators is important: the logical
operators do not penetrate into the bit level of its argument. They're only interested in the
final integer value.
Bitwise operators are stricter: they deal with every bit separately. If we assume that the
integer variable occupies 64 bits (which is common in modern computer systems), you can
imagine the bitwise operation as a 64-fold evaluation of the logical operator for each pair of bits
of the arguments. This analogy is obviously imperfect, as in the real world all these 64
operations are performed at the same time (simultaneously).

Logical vs. bit operations

We'll now show you an example of the difference in operation between the logic and bit
operations. Let's assume that the following assignments have been performed:
i = 15

j = 22

If we assume that the integers are stored with 32 bits, the bitwise image of the two variables
will be as follows:
i: 00000000000000000000000000001111

j: 00000000000000000000000000010110

The assignment is given:
log = i and j

We are dealing with a logical conjunction here. Let's trace the course of the calculations. Both
variables i and j are not zeros, so will be deemed to represent True. Consulting the truth table
for the and operator, we can see that the result will be True. No other operations are
performed.
log: True

Now the bitwise operation ‒ here it is:
bit = i & j

The & operator will operate with each pair of corresponding bits separately, producing the
values of the relevant bits of the result. Therefore, the result will be as follows:

i 00000000000000000000000000001111

j 00000000000000000000000000010110
bit = i & j00000000000000000000000000000110
These bits correspond to the integer value of six.
Let's look at the negation operators now. First the logical one:
logneg = not i

The logneg variable will be set to False ‒ nothing more needs to be done.
The bitwise negation goes like this:
bitneg = ~i

It may be a bit surprising: the bitneg variable value is -16. This may seem strange, but isn't
at all. If you wish to learn more, you should check out the binary numeral system and the rules
governing two's complement numbers.

i 00000000000000000000000000001111

bitneg = ~i 11111111111111111111111111110000

Each of these two-argument operators can be used in abbreviated form. These are the
examples of their equivalent notations:

x = x & yx &= y

x = x | yx |= y

x = x ^ yx ^= y

3.3.5 How do we deal with single bits?
We'll now show you what you can use bitwise operators for. Imagine that you're a developer
obliged to write an important piece of an operating system. You've been told that you're
allowed to use a variable assigned in the following way:
flag_register = 0x1234

The variable stores the information about various aspects of system operation. Each bit of the
variable stores one yes/no value. You've also been told that only one of these bits is yours ‒
the third (remember that bits are numbered from zero, and bit number zero is the lowest one,
while the highest is number 31). The remaining bits are not allowed to change, because they're
intended to store other data. Here's your bit marked with the letter x:
flag_register = 0000000000000000000000000000x000

You may be faced with the following tasks:
1. Check the state of your bit ‒ you want to find out the value of your bit; comparing the
whole variable to zero will not do anything, because the remaining bits can have completely
unpredictable values, but you can use the following conjunction property:
x & 1 = x

x & 0 = 0

If you apply the & operation to the flag_register variable along with the following bit image:
00000000000000000000000000001000

(note the 1 at your bit's position) as the result, you obtain one of the following bit strings:
00000000000000000000000000001000 if your bit was set to 1
00000000000000000000000000000000 if your bit was reset to 0

Such a sequence of zeros and ones, whose task is to grab the value or to change the selected
bits, is called a bit mask.
Let's build a bit mask to detect the state of your bit. It should point to the third bit. That bit has
the weight of 23 = 8. A suitable mask could be created by the following declaration:
the_mask = 8

You can also make a sequence of instructions depending on the state of your bit. Here it is:
if flag_register & the_mask:

 # My bit is set.

else:

 # My bit is reset.

2. Reset your bit ‒ you assign a zero to the bit while all the other bits must remain unchanged;
let's use the same property of the conjunction as before, but let's use a slightly different mask ‒
exactly as follows:
11111111111111111111111111110111

Note that the mask was created as a result of the negation of all the bits of the_mask variable.
Resetting the bit is simple, and looks like this (choose the one you like more):
flag_register = flag_register & ~the_mask

flag_register &= ~the_mask

3. Set your bit ‒ you assign a 1 to your bit, while all the remaining bits must remain
unchanged; use the following disjunction property:
x | 1 = 1

x | 0 = x

You're now ready to set your bit with one of the following instructions:
flag_register = flag_register | the_mask

flag_register |= the_mask

4. Negate your bit ‒ you replace a 1 with a 0 and a 0 with a 1. You can use an interesting
property of the xor operator:
x ^ 1 = ~x

x ^ 0 = x

and negate your bit with the following instructions:
flag_register = flag_register ^ the_mask

flag_register ^= the_mask

1
2
3
4
5

3.3.6 Binary left shift and binary right shift
Python offers yet another operation relating to single bits: shifting. This is applied only
to integer values, and you mustn't use floats as arguments for it.
You already apply this operation very often and quite unconsciously. How do you multiply any
number by ten? Take a look:
12345 × 10 = 123450
As you can see, multiplying by ten is in fact a shift of all the digits to the left and filling the
resulting gap with zero.
Division by ten? Take a look:
12340 ÷ 10 = 1234
Dividing by ten is nothing but shifting the digits to the right.
The same kind of operation is performed by the computer, but with one difference: as two is
the base for binary numbers (not 10), shifting a value one bit to the left thus corresponds
to multiplying it by two; respectively, shifting one bit to the right is like dividing by
two (notice that the rightmost bit is lost).
The shift operators in Python are a pair of digraphs: << and >>, clearly suggesting in which
direction the shift will act.
value << bits

value >> bits

The left argument of these operators is an integer value whose bits are shifted. The right
argument determines the size of the shift.
It shows that this operation is certainly not commutative.
The priority of these operators is very high. You'll see them in the updated table of priorities,
which we'll show you at the end of this section.
Take a look at the shifts in the code.

The final print() invocation produces the following output:
17 68 8

Note:

17 >> 1 → 17 // 2 (17 floor-divided by 2 to the power of 1) → 8 (shifting to the right
by one bit is the same as integer division by two)
17 << 2 → 17 * 4 (17 multiplied by 2 to the power of 2) → 68 (shifting to the left by
two bits is the same as integer multiplication by four)

var = 17
var_right = var >> 1
var_left = var << 2
print(var, var_left, var_right)

And here is the updated priority table, containing all the operators introduced so far:

PRIORITY OPERATOR
1 ~, +, - unary
2 **

3 *, /, //, %
4 +, - binary
5 <<, >>
6 <, <=, >, >=
7 ==, !=
8 &

9 |

10 =, +=, -=, *=, /=, %=, &=, ^=, |=, >>=, <<=

3.3 SECTION SUMMARY
1. Python supports the following logical operators:

and → if both operands are true, the condition is true, e.g. (True and True) is True
or → if any of the operands are true, the condition is true, e.g. (True or
False) is True
not → returns false if the result is true, and returns true if the result is false, e.g. not
True is False.

2. You can use bitwise operators to manipulate single bits of data. The following sample data:

x = 15, which is 0000 1111 in binary,
y = 16, which is 0001 0000 in binary.

will be used to illustrate the meaning of bitwise operators in Python. Analyze the following
examples:

& does a bitwise and, e.g. x & y = 0, which is 0000 0000 in binary,
| does a bitwise or, e.g. x | y = 31, which is 0001 1111 in binary,
˜ does a bitwise not, e.g. ˜ x = 240*, which is 1111 0000 in binary,
^ does a bitwise xor, e.g. x ^ y = 31, which is 0001 1111 in binary,
>> does a bitwise right shift, e.g. y >> 1 = 8, which is 0000 1000 in binary,
<< does a bitwise left shift, e.g. y << 3 = , which is 1000 0000 in binary,

* -16 (decimal from signed 2's complement) -- read more about the Two's
complement operation.

https://en.wikipedia.org/wiki/Two%27s_complement

1
2
3
4
5
6

1
2
3
4
5
6
7
8
9
10
11
12

3.3 SECTION QUIZ
Question 1: What is the output of the following snippet?

Question 2: What is the output of the following snippet?

Check

x = 1
y = 0

z = ((x == y) and (x == y)) or not(x == y)
print(not(z))

x = 4
y = 1

a = x & y
b = x | y
c = ~x # tricky!
d = x ^ 5
e = x >> 2
f = x << 2

print(a, b, c, d, e, f)

SECTION 3.4 – LISTS
Here you will learn about Python lists and how to perform various operations on them. You will
learn how to index, update, and delete list elements, how to perform slices, and how to use
some of the most important list functions and methods.

3.4.1 Why do we need lists?
It may happen that you have to read, store, process, and finally, print dozens, maybe
hundreds, perhaps even thousands of numbers. What then? Do you need to create a separate
variable for each value? Will you have to spend long hours writing statements like the following
one?
var1 = int(input())

var2 = int(input())

var3 = int(input())

var4 = int(input())

var5 = int(input())

var6 = int(input())

:

:

If you don't think that this is a complicated task, then take a piece of paper and write a program
that:

reads five numbers;
prints them in order from the smallest to the largest (NB, this kind of processing is
called sorting).

You should find that you don't even have enough paper to complete the task.
So far, you've learned how to declare variables that are able to store exactly one given value at
a time. Such variables are sometimes called scalars by analogy with mathematics. All the
variables you've used so far are actually scalars.
Think of how convenient it would be to declare a variable that could store more than one
value. For example, a hundred, or a thousand or even ten thousand. It would still be one and
the same variable, but very wide and capacious. Sounds appealing? Perhaps, but how would it
handle such a container full of different values? How would it choose just the one you need?
What if you could just number them? And then say: give me the value number 2; assign the
value number 15; increase the value number 10000.
We'll show you how to declare such multi-value variables. We'll do this with the example we
just suggested. We'll write a program that sorts a sequence of numbers. We won't be
particularly ambitious ‒ we'll assume that there are exactly five numbers.
Let's create a variable called numbers; it's assigned with not just one number, but is filled with
a list consisting of five values (note: the list starts with an open square bracket and ends
with a closed square bracket; the space between the brackets is filled with five numbers
separated by commas).
numbers = [10, 5, 7, 2, 1]

Let's say the same thing using adequate terminology: numbers is a list consisting of five
values, all of them numbers. We can also say that this statement creates a list of length
equal to five (as in there are five elements inside it).
The elements inside a list may have different types. Some of them may be integers, others
floats, and yet others may be lists.
Python has adopted a convention stating that the elements in a list are always numbered
starting from zero. This means that the item stored at the beginning of the list will have the
number zero. Since there are five elements in our list, the last of them is assigned the number
four. Don't forget this.
You'll soon get used to it, and it'll become second nature.
Before we go any further in our discussion, we have to state the following: our list is a
collection of elements, but each element is a scalar.

1
2

3
4
5
6

1
2

3
4
5

6
7

8

9

3.4.2 Indexing lists
How do you change the value of a chosen element in the list?
Let's assign a new value of 111 to the first element in the list. We do it this way:

And now we want the value of the fifth element to be copied to the second element ‒ can
you guess how to do it?

The value inside the brackets which selects one element of the list is called an index, while the
operation of selecting an element from the list is known as indexing.
We're going to use the print() function to print the list content each time we make the
changes. This will help us follow each step more carefully and see what's going on after a
particular list modification.
Note: all the indices used so far are literals. Their values are fixed at runtime, but any
expression can be the index, too. This opens up lots of possibilities.

numbers = [10, 5, 7, 2, 1]
print("Original list contents:", numbers) # Printing original
list contents.

numbers[0] = 111
print("New list contents: ", numbers) # Current list contents.

numbers = [10, 5, 7, 2, 1]
print("Original list contents:", numbers) # Printing original
list contents.

numbers[0] = 111
print("\nPrevious list contents:", numbers) # Printing previous
list contents.

numbers[1] = numbers[4] # Copying value of the fifth element to
the second.
print("New list contents:", numbers) # Printing current list
contents.

1
2

1
2

3
4
5

6
7

8

9
10

11

1
2

3.4.3 Accessing list content
Each of the list's elements may be accessed separately. For example, it can be printed:

Assuming that all of the previous operations have been completed successfully, the snippet will
send 111 to the console.

As you can see, the list may also be printed as a whole – just like here:

As you've probably noticed before, Python decorates the output in a way that suggests that all
the presented values form a list. The output from the example snippet looks like this:
[111, 1, 7, 2, 1]

The len() function
The length of a list may vary during execution. New elements may be added to the list, while
others may be removed from it. This means that the list is a very dynamic entity.
If you want to check the list's current length, you can use a function named len() (its name
comes from length).
The function takes the list's name as an argument, and returns the number of elements
currently stored inside the list (in other words ‒ the list's length).
Look at the last line of the previous code, run the program and check what value it will print to
the console. Can you guess?

print(numbers[0]) # Accessing the list's first element.

numbers = [10, 5, 7, 2, 1]
print("Original list contents:", numbers) # Printing original
list contents.

numbers[0] = 111
print("\nPrevious list contents:", numbers) # Printing previous
list contents.

numbers[1] = numbers[4] # Copying value of the fifth element to
the second.
print("Previous list contents:", numbers) # Printing previous
list contents.

print("\nList length:", len(numbers)) # Printing the list's
length.

print(numbers) # Printing the whole list.

1
2
3
4

1
2
3

3.4.4 Removing elements from a list
Any of the list's elements may be removed at any time ‒ this is done with an instruction
named del (delete). Note: it's an instruction, not a function.
You have to point to the element to be removed ‒ it'll vanish from the list, and the list's length
will be reduced by one.
Look at the following snippet. Can you guess what output it will produce? Run the program and
check.

You can't access an element which doesn't exist ‒ you can neither get its value nor assign
it a value. Both of these instructions will cause runtime errors now:

Add the previous snippet after the last line of code, run the program and check what happens.

del numbers[1]
print(len(numbers))
print(numbers)

print(numbers[4])
numbers[4] = 1

1
2

3
4
5

6
7

8

9
10

11
12
13
14
15

16

17
18
19

Note: we've removed one of the list's elements ‒ there are only four elements in the list now.
This means that et number four doesn't exist.

numbers = [10, 5, 7, 2, 1]
print("Original list content:", numbers) # Printing original list
content.

numbers[0] = 111
print("\nPrevious list content:", numbers) # Printing previous
list content.

numbers[1] = numbers[4] # Copying value of the fifth element to
the second.
print("Previous list content:", numbers) # Printing previous list
content.

print("\nList's length:", len(numbers)) # Printing previous list
length.

###

del numbers[1] # Removing the second element from the list.
print("New list's length:", len(numbers)) # Printing new list
length.
print("\nNew list content:", numbers) # Printing current list
content.

###

1
2
3

1
2
3

3.4.5 Negative indices are legal
It may look strange, but negative indices are legal, and can be very useful.
An element with an index equal to -1 is the last one in the list.

The example snippet will output 1. Run the program and check.
Similarly, the element with an index equal to -2 is the one before last in the list.

The example snippet will output 2.
The last accessible element in our list is numbers[-4] (the first one) ‒ don't try to go any
further!

numbers = [111, 7, 2, 1]
print(numbers[-1])

numbers = [111, 7, 2, 1]
print(numbers[-2])

1

2
3
4

5
6

7
8

9
10
11

LAB 23 The basics of lists
There once was a hat. The hat contained no rabbit, but a list of five numbers: 1, 2, 3, 4, and 5.
Your task is to:

write a line of code that prompts the user to replace the middle number in the list with an
integer number entered by the user (Step 1)
write a line of code that removes the last element from the list (Step 2)
write a line of code that prints the length of the existing list (Step 3).

Ready for this challenge?

Code

Hint
Sample Solution

hat_list = [1, 2, 3, 4, 5] # This is an existing list of numbers
hidden in the hat.

Step 1: write a line of code that prompts the user
to replace the middle number with an integer number entered by
the user.

Step 2: write a line of code that removes the last element from
the list.

Step 3: write a line of code that prints the length of the
existing list.

print(hat_list)

3.4.6 Functions vs. methods
A method is a specific kind of function ‒ it behaves like a function and looks like a function,
but differs in the way in which it acts, and in its invocation style.
A function doesn't belong to any data ‒ it gets data, it may create new data and it
(generally) produces a result.
A method does all these things, but is also able to change the state of a selected entity.
A method is owned by the data it works for, while a function is owned by the whole
code.
This also means that invoking a method requires some specification of the data from which the
method is invoked.
It may sound puzzling here, but we'll deal with it in depth when we delve into object-oriented
programming.
In general, a typical function invocation may look like this:
result = function(arg)

The function takes an argument, does something, and returns a result.
A typical method invocation usually looks like this:
result = data.method(arg)

NOTE the name of the method is preceded by the name of the data which owns the method.
Next, you add a dot, followed by the method name, and a pair of parenthesis enclosing the
arguments.
The method will behave like a function, but can do something more ‒ it can change the
internal state of the data from which it has been invoked.
You may ask: why are we talking about methods, not about lists?
This is an essential issue right now, as we're going to show you how to add new elements to
an existing list. This can be done with methods owned by all the lists, not by functions.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

3.4.7 Adding elements to a list: append() and insert()
A new element may be glued to the end of the existing list:
list.append(value)

Such an operation is performed by a method named append(). It takes its argument's value
and puts it at the end of the list which owns the method.
The list's length then increases by one.
The insert() method is a bit smarter ‒ it can add a new element at any place in the list,
not only at the end.
list.insert(location, value)

It takes two arguments:

the first shows the required location of the element to be inserted; note: all the existing
elements that occupy locations to the right of the new element (including the one at the
indicated position) are shifted to the right, in order to make space for the new element;
the second is the element to be inserted.

Look at the following code. See how we use the append() and insert() methods. Pay
attention to what happens after using insert(): the former first element is now the second,
the second the third, and so on.

Add the following snippet after the last line of code:

numbers = [111, 7, 2, 1]
print(len(numbers))
print(numbers)

###

numbers.append(4)

print(len(numbers))
print(numbers)

###

numbers.insert(0, 222)
print(len(numbers))
print(numbers)

#

1
2

1
2
3
4
5
6
7

1
2
3
4
5
6
7

Print the final list content to the screen and see what happens. This snippet inserts 333 into the
list, making it the second element. The former second element becomes the third, the third the
fourth, and so on.
You can start a list's life by making it empty (this is done with an empty pair of square
brackets) and then adding new elements to it as needed.
Take a look at the following snippet. Try to guess its output after the for loop execution. Run
the program to check if you were right.

It'll be a sequence of consecutive integer numbers from 1 (you then add one to all the
appended values) to 5.
We've modified the snippet a bit:

What happens now? Run the program and check if this time you're right, too.
You should get the same sequence, but in reverse order (this is the merit of using
the insert() method).

numbers.insert(1, 333)

my_list = [] # Creating an empty list.

for i in range(5):
 my_list.append(i + 1)

print(my_list)

my_list = [] # Creating an empty list.

for i in range(5):
 my_list.insert(0, i + 1)

print(my_list)

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

3.4.8 Making use of lists
The for loop has a special variant that can process lists very effectively ‒ let's take a look at
that.

Let's assume that you want to calculate the sum of all the values stored in the
my_list list.
You need a variable whose sum will be stored and initially assigned a value of 0 ‒ its name will
be total. (Note: we're not going to name it sum as Python uses the same name for one of its
built-in functions: sum(). Using the same name would generally be considered bad
practice.) Then you add to it all the elements of the list using the for loop. Take a look at the
previous snippet.
Let's comment on this example:

the list is assigned a sequence of five integer values;
the i variable takes the values 0, 1, 2, 3, and 4, and then it indexes the list, selecting
the subsequent elements: the first, second, third, fourth and fifth;
each of these elements is added together by the += operator to the total variable,
giving the final result at the end of the loop;
note the way in which the len() function has been employed ‒ it makes the code
independent of any possible changes in the list's contents.

The second aspect of the for loop
But the for loop can do much more. It can hide all the actions connected to the list's indexing,
and deliver all the list's elements in a handy way.
This modified snippet shows how it works:

What happens here?

my_list = [10, 1, 8, 3, 5]
total = 0

for i in range(len(my_list)):
 total += my_list[i]

print(total)

my_list = [10, 1, 8, 3, 5]
total = 0

for i in my_list:
 total += i

print(total)

the for instruction specifies the variable used to browse the list (i here) followed by the
in keyword and the name of the list being processed (my_list here)
the i variable is assigned the values of all the subsequent list's elements, and the
process occurs as many times as there are elements in the list;
this means that you use the i variable as a copy of the elements' values, and you don't
need to use indices;
the len() function is not needed here, either.

1
2
3
4
5
6

1
2
3
4
5
6
7

1
2
3
4
5

3.4.9 Lists in action
Let's leave lists aside for a short moment and look at one intriguing issue.
Imagine that you need to rearrange the elements of a list, i.e. reverse the order of the
elements: the first and the fifth as well as the second and fourth elements will be swapped. The
third one will remain untouched.
Question: how can you swap the values of two variables?
Take a look at the snippet:

If you do something like this, you would lose the value previously stored in variable_2.
Changing the order of the assignments will not help. You need a third variable that serves as
an auxiliary storage.
This is how you can do it:

Python offers a more convenient way of doing the swap – take a look:

Clear, effective and elegant – isn't it?
Now you can easily swap the list's elements to reverse their order:

variable_1 = 1
variable_2 = 2

variable_2 = variable_1
variable_1 = variable_2

variable_1 = 1
variable_2 = 2

auxiliary = variable_1
variable_1 = variable_2
variable_2 = auxiliary

variable_1 = 1
variable_2 = 2

variable_1, variable_2 = variable_2, variable_1

1
2
3
4
5
6
7

1
2

3
4
5

Run the snippet. Its output should look like this:
[5, 3, 8, 1, 10]

It looks fine with five elements.
Will it still be acceptable with a list containing 100 elements? No, it won't.
Can you use the for loop to do the same thing automatically, irrespective of the list's length?
Yes, you can.
This is how we've done it:

Note:

we've assigned the length variable with the current list's length (this makes our code a
bit clearer and shorter)
we've launched the for loop to run through its body length // 2 times (this works
well for lists with both even and odd lengths, because when the list contains an odd
number of elements, the middle one remains untouched)
we've swapped the ith element (from the beginning of the list) with the one with an index
equal to (length – i – 1) (from the end of the list); in our example, for i equal
to 0 the (length – i – 1) gives 4; for i equal to 1, it gives 3 ‒ this is exactly what
we needed.

Lists are extremely useful, and you'll encounter them very often.

my_list = [10, 1, 8, 3, 5]

my_list[0], my_list[4] = my_list[4], my_list[0]
my_list[1], my_list[3] = my_list[3], my_list[1]

print(my_list)

for i in range(length // 2):
 my_list[i], my_list[length – i – 1] = my_list[length – i – 1],
my_list[i]

print(my_list)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

LAB 24 The basics of lists ‒ the Beatles
The Beatles were one of the most popular music groups of the 1960s, and the best-selling
band in history. Some people consider them to be the most influential act of the rock era.
Indeed, they were included in Time magazine's compilation of the 20th Century's 100 most
influential people.
The band underwent many line-up changes, culminating in 1962 with the line-up of John
Lennon, Paul McCartney, George Harrison, and Richard Starkey (better known as Ringo
Starr).
Write a program that reflects these changes and lets you practice with the concept of lists. Your
task is to:

step 1: create an empty list named beatles;
step 2: use the append() method to add the following members of the band to the
list: John Lennon, Paul McCartney, and George Harrison;
step 3: use the for loop and the append() method to prompt the user to add the
following members of the band to the list: Stu Sutcliffe, and Pete Best;
step 4: use the del instruction to remove Stu Sutcliffe and Pete Best from the
list;
step 5: use the insert() method to add Ringo Starr to the beginning of the list.

By the way, are you a Beatles fan? (The Beatles is one of Greg's favorite bands. But
wait...who's Greg...?)

Code

Hint

step 1
print("Step 1:", beatles)

step 2
print("Step 2:", beatles)

step 3
print("Step 3:", beatles)

step 4
print("Step 4:", beatles)

step 5
print("Step 5:", beatles)

testing list length
print("The Fab", len(beatles))

Sample Solution

1
2

1
2
3
4
5
6
7
8
9
10

11

1
2

1
2
3
4
5
6

3.4 SECTION SUMMARY
1. The list is a type of data in Python used to store multiple objects. It is an ordered and
mutable collection of comma-separated items between square brackets, e.g.:

2. Lists can be indexed and updated, e.g.:

3. Lists can be nested, e.g.:

You will learn more about nesting in Module 3.7 ‒ for the time being, we just want you to be
aware that something like this is possible, too.
4. List elements and lists can be deleted, e.g.:

Again, you will learn more about this in Module 3.6 ‒ don't worry. For the time being just try to
experiment with this code and check how changing it affects the output.
5. Lists can be iterated through using the for loop, e.g.:

my_list = [1, None, True, "I am a string", 256, 0]

my_list = [1, None, True, 'I am a string', 256, 0]
print(my_list[3]) # outputs: I am a string
print(my_list[-1]) # outputs: 0

my_list[1] = '?
print(my_list) # outputs: [1, '?', True, 'I am a string', 256, 0]

my_list.insert(0, "first")
my_list.append("last")
print(my_list) # outputs: ['first', 1, '?', True, 'I am a
string', 256, 0, 'last']

my_list = [1, 'a', ["list", 64, [0, 1], False]]

my_list = [1, 2, 3, 4]
del my_list[2]
print(my_list) # outputs: [1, 2, 4]

del my_list # deletes the whole list

1
2
3
4
5

1
2
3
4
5
6

6. The len() function may be used to check the list's length, e.g.:

7. A typical function invocation looks as follows: result = function(arg), while a
typical method invocation looks like this: result = data.method(arg).

my_list = ["white", "purple", "blue", "yellow", "green"]

for color in my_list:
 print(color)

my_list = ["white", "purple", "blue", "yellow", "green"]
print(len(my_list)) # outputs 5

del my_list[2]
print(len(my_list)) # outputs 4

1
2
3
4
5
6
7

1
2
3
4
5
6
7
8
9
10

1
2
3
4

1
2
3
4

3.4 SECTION QUIZ
Question 1: What is the output of the following snippet?

Question 2: What is the output of the following snippet?

Question 3: What is the output of the following snippet?

Question 4: What is the output of the following snippet?

Check

lst = [1, 2, 3, 4, 5]
lst.insert(1, 6)
del lst[0]
lst.append(1)

print(lst)

lst = [1, 2, 3, 4, 5]
lst_2 = []
add = 0

for number in lst:
 add += number
 lst_2.append(add)

print(lst_2)

lst = []
del lst
print(lst)

lst = [1, [2, 3], 4]
print(lst[1])
print(len(lst))

SECTION 3.5 – SORTING SIMPLE LISTS: THE BUBBLE SORT
ALGORITHM
In this section, you will learn how to sort simple lists using the Bubble sort algorithm.

3.5.1 The bubble sort
Now that you can effectively juggle the elements of lists, it's time to learn how to sort them.
Many sorting algorithms have been invented so far, which differ a lot in speed, as well as in
complexity. We are going to show you a very simple algorithm, easy to understand, but
unfortunately not too efficient, either. It's used very rarely, and certainly not for large and
extensive lists.
Let's say that a list can be sorted in two ways:

increasing (or more precisely ‒ non-decreasing) ‒ if in every pair of adjacent elements,
the former element is not greater than the latter;
decreasing (or more precisely ‒ non-increasing) ‒ if in every pair of adjacent elements,
the former element is not less than the latter.

In the following sections, we'll sort the list in increasing order, so that the numbers will be
ordered from the smallest to the largest.
Here's the list:

8 10 6 2 4

We'll try to use the following approach: we'll take the first and the second elements and
compare them; if we determine that they're in the wrong order (i.e. the first is greater than the
second), we'll swap them round; if their order is valid, we'll do nothing. A glance at our list
confirms the latter ‒ the elements 01 and 02 are in the proper order, as in 8 < 10.
Now look at the second and the third elements. They're in the wrong positions. We have to
swap them:

8 6 10 2 4

We go further, and look at the third and the fourth elements. Again, this is not what it's
supposed to be like. We have to swap them:

8 6 2 10 4

Now we check the fourth and the fifth elements. Yes, they too are in the wrong positions.
Another swap occurs:

8 6 2 4 10

The first pass through the list is already finished. We're still far from finishing our job, but
something curious has happened in the meantime. The largest element, 10, has already gone
to the end of the list. Note that this is the desired place for it. All the remaining elements form
a picturesque mess, but this one is already in place.
Now, for a moment, try to imagine the list in a slightly different way ‒ namely, like this:

10

4

2

6

8

Look ‒ 10 is at the top. We could say that it floated up from the bottom to the surface, just like
the bubble in a glass of champagne. The sorting method derives its name from the same
observation ‒ it's called a bubble sort.
Now we start with the second pass through the list. We look at the first and second elements –
a swap is necessary:

6 8 2 4 10

Time for the second and third elements: we have to swap them too:

6 2 8 4 10

Now the third and fourth elements, and the second pass is finished, as 8 is already in place:

6 2 4 8 10

We start the next pass immediately. Watch the first and the second elements carefully –
another swap is needed:

2 6 4 8 10

Now 6 needs to go into place. We swap the second and the third elements:

2 4 6 8 10

The list is already sorted. We have nothing more to do. This is exactly what we want.
As you can see, the essence of this algorithm is simple: we compare the adjacent elements,
and by swapping some of them, we achieve our goal.
Let's code into Python all the actions performed during a single pass through the list, and then
we'll consider how many passes we actually need in order to perform it. We haven't explained
this so far, and we'll do that a little later.

1
2
3
4
5

6

1
2

3
4
5
6
7
8
9

10
11

3.5.2 Sorting a list
How many passes do we need to sort the entire list?
We solve this issue in the following way: we introduce another variable; its task is to observe
if any swap has been done during the pass or not; if there is no swap, then the list is already
sorted, and nothing more has to be done. We create a variable named swapped, and we
assign a value of False to it, to indicate that there are no swaps. Otherwise, it will be
assigned True.

You should be able to read and understand this program without any problems:

Run the program and test it.

my_list = [8, 10, 6, 2, 4] # list to sort

for i in range(len(my_list) – 1): # we need (5 – 1) comparisons
 if my_list[i] > my_list[i + 1]: # compare adjacent elements
 my_list[i], my_list[i + 1] = my_list[i + 1], my_list[i] #
If we end up here, we have to swap the elements.

my_list = [8, 10, 6, 2, 4] # list to sort
swapped = True # It's a little fake, we need it to enter the
while loop.

while swapped:
 swapped = False # no swaps so far
 for i in range(len(my_list) – 1):
 if my_list[i] > my_list[i + 1]:
 swapped = True # a swap occurred!
 my_list[i], my_list[i + 1] = my_list[i + 1],
my_list[i]
print(my_list)

1
2
3
4
5
6
7
8
9
10
11
12
13
14

15
16
17
18

1
2
3
4

3.5.3 The bubble sort – interactive version
Take a look at the following complete program, enriched by a conversation with the user, and
allowing the user to enter and to print elements from the list: The bubble sort ‒ final
interactive version.

Python, however, has its own sorting mechanisms. No one needs to write their own sorts, as
there is a sufficient number of ready-to-use tools.
We explained this sorting system to you because it's important to learn how to process a list's
contents, and to show you how real sorting may work.
If you want Python to sort your list, you can do it like this:

It is as simple as that.
The snippet's output is as follows:
[2, 4, 6, 8, 10]

As you can see, all the lists have a method named sort(), which sorts them as fast as
possible. You've already learned about some of the list methods before, and you're going to
learn more about others very soon.

my_list = []
swapped = True
num = int(input("How many elements do you want to sort: "))

for i in range(num):
 val = float(input("Enter a list element: "))
 my_list.append(val)

while swapped:
 swapped = False
 for i in range(len(my_list) – 1):
 if my_list[i] > my_list[i + 1]:
 swapped = True
 my_list[i], my_list[i + 1] = my_list[i + 1],
my_list[i]

print("\nSorted:")
print(my_list)

my_list = [8, 10, 6, 2, 4]
my_list.sort()
print(my_list)

1
2
3
4
5
6

1
2
3
4
5
6

3.5 SECTION SUMMARY
1. You can use the sort() method to sort elements of a list, e.g.:

2. There is also a list method called reverse(), which you can use to reverse the list, e.g.:

lst = [5, 3, 1, 2, 4]
print(lst)

lst.sort()
print(lst) # outputs: [1, 2, 3, 4, 5]

lst = [5, 3, 1, 2, 4]
print(lst)

lst.reverse()
print(lst) # outputs: [4, 2, 1, 3, 5]

1
2
3
4
5

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9
10

3.5 SECTION QUIZ
Question 1: What is the output of the following snippet?

Question 2: What is the output of the following snippet?

Question 3: What is the output of the following snippet?

Check

lst = ["D", "F", "A", "Z"]
lst.sort()

print(lst)

a = 3
b = 1
c = 2

lst = [a, c, b]
lst.sort()

print(lst)

a = "A"
b = "B"
c = "C"
d = " "

lst = [a, b, c, d]
lst.reverse()

print(lst)

SECTION 3.6 – OPERATIONS ON LISTS
In this section, you will learn how to process lists using slices and the in and not
in operators. You will also analyze a few simple programs utilizing the concept of lists to learn
how to apply them in more challenging projects.

1
2
3
4
5

3.6.1 The inner life of lists
Now we want to show you one important, and very surprising, feature of lists, which strongly
distinguishes them from ordinary variables.
We want you to memorize it ‒ it may affect your future programs, and cause severe problems if
forgotten or overlooked.
Take a look at the following snippet.

The program:

creates a one-element list named list_1;
assigns it to a new list named list_2;
changes the only element of list_1;
prints out list_2.

The surprising part is the fact that the program will output: [2], not [1], which seems to be the
obvious solution.
Lists (and many other complex Python entities) are stored in different ways than ordinary
(scalar) variables.
You could say that:

the name of an ordinary variable is the name of its content;
the name of a list is the name of a memory location where the list is stored.

Read these two lines once more ‒ the difference is essential for understanding what we are
going to talk about next.
The assignment: list_2 = list_1 copies the name of the array, not its contents. In effect,
the two names (list_1 and list_2) identify the same location in the computer memory.
Modifying one of them affects the other, and vice versa.
How do you cope with that?

list_1 = [1]
list_2 = list_1
list_1[0] = 2
print(list_2)

1
2
3
4
5

1
2
3
4

3.6.2 Powerful slices
Fortunately, the solution is at your fingertips ‒ it's called a slice.
A slice is an element of Python syntax that allows you to make a brand new copy of a list, or
parts of a list.
It actually copies the list's contents, not the list's name.
This is exactly what you need. Take a look at the following snippet:

Its output is [1].
The inconspicuous part of the code described as [:] is able to produce a brand new list.
One of the most general forms of the slice looks as follows:
my_list[start:end-1]

As you can see, it resembles indexing, but the colon inside makes a big difference.
A slice of this form makes a new (target) list, taking elements from the source list ‒ the
elements of the indices from start to end – 1.
Note: not to end but to end – 1. An element with an index equal to end is the first element
which does not take part in the slicing.
Using negative values for both start and end is possible (just like in indexing).
Take a look at the snippet:

The new_list list will have end – start (3 – 1 = 2) elements ‒ the ones with indices equal
to 1 and 2 (but not 3).
The snippet's output is: [8, 6]
Run the following code to see how Python copies the entire list, and some fragment of a list.
Feel free to experiment!

list_1 = [1]
list_2 = list_1[:]
list_1[0] = 2
print(list_2)

my_list = [10, 8, 6, 4, 2]
new_list = my_list[1:3]
print(new_list)

1
2
3
4
5
6
7
8
9
10

Copying the entire list.
list_1 = [1]
list_2 = list_1[:]
list_1[0] = 2
print(list_2)
Copying some part of the list.
my_list = [10, 8, 6, 4, 2]
new_list = my_list[1:3]
print(new_list)

1
2
3
4

1
2
3
4

3.6.3 Slices – negative indices
Look at the following snippet:
my_list[start:end]

To repeat:

start is the index of the first element included in the slice;
end is the index of the first element not included in the slice.

This is how negative indices work with the slice:

The snippet's output is:
[8, 6, 4]

If the start specifies an element lying further than the one described by the end (from the
list's beginning), the slice will be empty:
my_list = [10, 8, 6, 4, 2]

new_list = my_list[-1:1]

print(new_list)

The snippet's output is:
[]

If you omit the start in your slice, it is assumed that you want to get a slice beginning at the
element with index 0.
In other words, the slice of this form:
my_list[:end]

is a more compact equivalent of:
my_list[0:end]

Look at the following snippet:

This is why its output is: [10, 8, 6].

my_list = [10, 8, 6, 4, 2]
new_list = my_list[1:-1]
print(new_list)

my_list = [10, 8, 6, 4, 2]
new_list = my_list[:3]
print(new_list)

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

Similarly, if you omit the end in your slice, it is assumed that you want the slice to end at the
element with the index len(my_list).
In other words, the slice of this form:
my_list[start:]

is a more compact equivalent of:
my_list[start:len(my_list)]

Look at the following snippet:

Its output is therefore: [4, 2].
As we've said before, omitting both start and end makes a copy of the whole list:

The snippet's output is: [10, 8, 6, 4, 2].

More about the del instruction
The previously described del instruction is able to delete more than just a list's elements at
once ‒ it can delete slices too:

Note: in this case, the slice doesn't produce any new list!
The snippet's output is: [10, 4, 2].
Deleting all the elements at once is possible too:

The list becomes empty, and the output is: [].
Removing the slice from the code changes its meaning dramatically.
Take a look:

my_list = [10, 8, 6, 4, 2]
new_list = my_list[3:]
print(new_list)

my_list = [10, 8, 6, 4, 2]
new_list = my_list[:]
print(new_list)

my_list = [10, 8, 6, 4, 2]
del my_list[1:3]
print(my_list)

my_list = [10, 8, 6, 4, 2]
del my_list[:]
print(my_list)

1
2
3
4

The del instruction will delete the list itself, not its content.
The print() function invocation from the last line of the code will then cause a runtime error.

my_list = [10, 8, 6, 4, 2]
del my_list
print(my_list)

1
2
3

1
2
3
4
5
6

3.6.4 The in and not in operators
Python offers two very powerful operators, able to look through the list in order to check
whether a specific value is stored inside the list or not.
These operators are:

The first of them (in) checks if a given element (its left argument) is currently stored
somewhere inside the list (the right argument) ‒ the operator returns True in this case.
The second (not in) checks if a given element (its left argument) is absent in a list ‒ the
operator returns True in this case.
Look at the following code. The snippet shows both operators in action. Can you guess its
output? Run the program to check if you were right.

elem in my_list
elem not in my_list

my_list = [0, 3, 12, 8, 2]

print(5 in my_list)
print(5 not in my_list)
print(12 in my_list)

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

3.6.5 Lists – some simple programs
Now we want to show you some simple programs utilizing lists.
The first of them tries to find the greater value in the list. Look at the following code.

The concept is rather simple ‒ we temporarily assume that the first element is the largest one,
and check the hypothesis against all the remaining elements in the list.
The code outputs 17 (as expected).
The code may be rewritten to make use of the newly introduced form of the for loop:

This program performs one unnecessary comparison, when the first element is compared with
itself, but this isn't a problem at all.
The code outputs 17, too (nothing unusual).
If you need to save computer power, you can use a slice:

The question is: which of these two actions consumes more computer resources ‒ just one
comparison, or slicing almost all of a list's elements?

my_list = [17, 3, 11, 5, 1, 9, 7, 15, 13]
largest = my_list[0]

for i in range(1, len(my_list)):
 if my_list[i] > largest:
 largest = my_list[i]

print(largest)

my_list = [17, 3, 11, 5, 1, 9, 7, 15, 13]
largest = my_list[0]

for i in my_list:
 if i > largest:
 largest = i

print(largest)

my_list = [17, 3, 11, 5, 1, 9, 7, 15, 13]
largest = my_list[0]

for i in my_list[1:]:
 if i > largest:
 largest = i

print(largest)

1
2
3
4
5
6
7
8
9
10
11
12
13
14

1
2
3
4
5
6
7
8
9
10

Now let's find the location of a given element inside a list:

Note:

the target value is stored in the to_find variable;
the current status of the search is stored in the found variable (True/False)
when found becomes True, the for loop is exited.

Let's assume that you've chosen the following numbers in the lottery: 3, 7, 11, 42, 34, 49.
The numbers that have been drawn are: 5, 11, 9, 42, 3, 49.
The question is: how many numbers have you hit?
This program will give you the answer:

Note:

the drawn list stores all the drawn numbers;
the bets list stores your bets;
the hits variable counts your hits.

The program output is: 4.

my_list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
to_find = 5
found = False

for i in range(len(my_list)):
 found = my_list[i] == to_find
 if found:
 break

if found:
 print("Element found at index", i)
else:
 print("absent")

drawn = [5, 11, 9, 42, 3, 49]
bets = [3, 7, 11, 42, 34, 49]

for number in bets:
 if number in drawn:
 hits += 1

print(hits)

1
2
3
4
5
6
7

LAB 25 Operating with lists ‒ basics
Imagine a list ‒ not very long, not very complicated, just a simple list containing some integer
numbers. Some of these numbers may be repeated, and this is the clue. We don't want any
repetitions. We want them to be removed.
Your task is to write a program which removes all the number repetitions from the list. The goal
is to have a list in which all the numbers appear not more than once.
Note: assume that the source list is hard-coded inside the code ‒ you don't have to enter it
from the keyboard. Of course, you can improve the code and add a part that can carry out a
conversation with the user and obtain all the data from her/him.
Hint: we encourage you to create a new list as a temporary work area ‒ you don't need to
update the list in situ.
We've provided no test data, as that would be too easy. You can use our skeleton instead.

Code

Hint
Sample Solution

my_list = [1, 2, 4, 4, 1, 4, 2, 6, 2, 9]
#
Write your code here.
#
print("The list with unique elements only:")
print(my_list)

1
2
3
4
5
6
7

1
2
3
4
5

1
2
3
4

1
2
3
4
5
6
7
8
9

3.6 SECTION SUMMARY
1. If you have a list list_1, then the following assignment: list_2 = list_1 does not
make a copy of the list_1 list, but makes the variables list_1 and list_2 point to one
and the same list in memory. For example:

2. If you want to copy a list or part of the list, you can do it by performing slicing:

3. You can use negative indices to perform slices, too. For example:

4. The start and end parameters are optional when performing a slice: list[start:end],
e.g.:

5. You can delete slices using the del instruction:

vehicles_one = ['car', 'bicycle', 'motor']
print(vehicles_one) # outputs: ['car', 'bicycle', 'motor']

vehicles_two = vehicles_one
del vehicles_one[0] # deletes 'car'
print(vehicles_two) # outputs: ['bicycle', 'motor']

colors = ['red', 'green', 'orange']

copy_whole_colors = colors[:] # copy the entire list
copy_part_colors = colors[0:2] # copy part of the list

sample_list = ["A", "B", "C", "D", "E"]
new_list = sample_list[2:-1]
print(new_list) # outputs: ['C', 'D']

my_list = [1, 2, 3, 4, 5]
slice_one = my_list[2:]
slice_two = my_list[:2]
slice_three = my_list[-2:]

print(slice_one) # outputs: [3, 4, 5]
print(slice_two) # outputs: [1, 2]
print(slice_three) # outputs: [4, 5]

1
2
3
4
5
6
7

1
2
3
4
5
6

6. You can test if some items exist in a list or not using the keywords in and not in, e.g.:

my_list = [1, 2, 3, 4, 5]
del my_list[0:2]
print(my_list) # outputs: [3, 4, 5]

del my_list[:]
print(my_list) # deletes the list content, outputs: []

my_list = ["A", "B", 1, 2]

print("A" in my_list) # outputs: True
print("C" not in my_list) # outputs: True
print(2 not in my_list) # outputs: False

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8
9

3.6 SECTION QUIZ
Question 1: What is the output of the following snippet?

Question 2: What is the output of the following snippet?

Question 3: What is the output of the following snippet?

Question 4: What is the output of the following snippet?

list_1 = ["A", "B", "C"]
list_2 = list_1
list_3 = list_2

del list_1[0]
del list_2[0]

print(list_3)

list_1 = ["A", "B", "C"]
list_2 = list_1
list_3 = list_2
del list_1[0]
del list_2

print(list_3)

list_1 = ["A", "B", "C"]
list_2 = list_1
list_3 = list_2

del list_1[0]
del list_2[:]

print(list_3)

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7

Question 5: Insert in or not in instead of ??? so that the code outputs the expected result.

Check

list_1 = ["A", "B", "C"]
list_2 = list_1[:]
list_3 = list_2[:]

del list_1[0]
del list_2[0]

print(list_3)

my_list = [1, 2, "in", True, "ABC"]

print(1 ??? my_list) # outputs True
print("A" ??? my_list) # outputs True
print(3 ??? my_list) # outputs True
print(False ??? my_list) # outputs False

SECTION 3.7 – LISTS IN ADVANCED APPLICATIONS
In this section, you will learn about arrays, nested lists (matrices), and list comprehensions.

1
2
3
4
5

1
2

1
2

3.7.1 Lists in lists
Lists can consist of scalars (namely numbers) and elements of a much more complex structure
(you've already seen such examples as strings, booleans, or even other lists in the previous
Section Summary lessons). Let's have a closer look at the case where a list's elements are
just lists.
We often find such arrays in our lives. Probably the best example of this is a chessboard.
A chessboard is composed of rows and columns. There are eight rows and eight columns.
Each column is marked with the letters A through H. Each line is marked with a number from
one to eight.
The location of each field is identified by letter-digit pairs. Thus, we know that the bottom left
corner of the board (the one with the white rook) is A1, while the opposite corner is H8.
Let's assume that we're able to use the selected numbers to represent any chess piece. We
can also assume that every row on the chessboard is a list.
Look at the following code:

It builds a list containing eight elements representing the second row of the chessboard ‒ the
one filled with pawns (assume that WHITE_PAWN is a predefined symbol representing a white
pawn).

List comprehensions
The same effect may be achieved by means of a list comprehension, the special syntax used
by Python in order to fill massive lists.
A list comprehension is actually a list, but created on-the-fly during program execution, and
is not described statically.
Take a look at the snippet:

The part of the code placed inside the brackets specifies:
the data to be used to fill the list (WHITE_PAWN)
the clause specifying how many times the data occurs inside the list (for i in range(8)).
Take a look at some other list comprehension examples:
Example #1:

row = []

for i in range(8):
 row.append(WHITE_PAWN)

row = [WHITE_PAWN for i in range(8)]

squares = [x ** 2 for x in range(10)]

1
2

1
2

The snippet produces a ten-element list filled with squares of ten integer numbers starting from
zero (0, 1, 4, 9, 16, 25, 36, 49, 64, 81)
Example #2:

The snippet creates an eight-element array containing the first eight powers of two (1, 2, 4, 8,
16, 32, 64, 128)
Example #3:

The snippet makes a list with only the odd elements of the squares list.

twos = [2 ** i for i in range(8)]

odds = [x for x in squares if x % 2 != 0]

1
2
3
4
5
6

1
2

3.7.2 Two-dimensional arrays
Let's also assume that a predefined symbol named EMPTY designates an empty field on the
chessboard.
So, if we want to create a list of lists representing the whole chessboard, it may be done in the
following way:

Note:

the inner part of the loop creates a row consisting of eight elements (each of them equal
to EMPTY) and appends it to the board list;
the outer part repeats it eight times;
in total, the board list consists of 64 elements (all equal to EMPTY)

This model perfectly mimics the real chessboard, which is in fact an eight-element list of
elements, all being single rows. Let's summarize our observations:

the elements of the rows are fields, eight of them per row;
the elements of the chessboard are rows, eight of them per chessboard.

The board variable is now a two-dimensional array. It's also called, by analogy to algebraic
terms, a matrix.
As list comprehensions can be nested, we can shorten the board creation in the following way:

The inner part creates a row, and the outer part builds a list of rows.
Access to the selected field of the board requires two indices ‒ the first selects the row; the
second ‒ the field number inside the row, which is de facto a column number.
Take a look at the chessboard. Every field contains a pair of indices which should be given to
access the field's contents:

board = []

for i in range(8):
 row = [EMPTY for i in range(8)]
 board.append(row)

board = [[EMPTY for i in range(8)] for j in range(8)]

1
2
3
4
5

1
2

1
2

Glancing at the previous figure, let's set some chess pieces on the board. First, let's add all the
rooks:

If you want to add a knight to C4, you do it as follows:

And now a pawn to E5:

And now ‒ experiment with the code yourself.

board[0][0] = ROOK
board[0][7] = ROOK
board[7][0] = ROOK
board[7][7] = ROOK

board[4][2] = KNIGHT

board[3][4] = PAWN

1
2

1
2
3
4
5
6
7
8
9
10
11
12
13
14

3.7.3 Multidimensional nature of lists: advanced applications
Let's go deeper into the multidimensional nature of lists. To find any element of a two-
dimensional list, you have to use two coordinates:

a vertical one (row number)
and a horizontal one (column number).

Imagine that you're developing a piece of software for an automatic weather station. The
device records the air temperature on an hourly basis and does it throughout the month. This
gives you a total of 24 × 31 = 744 values. Let's try to design a list capable of storing all these
results.
First, you have to decide which data type would be adequate for this application. In this case,
a float would be best, since this thermometer is able to measure the temperature with an
accuracy of 0.1ºC.
Then you take an arbitrary decision that the rows will record the readings every hour on the
hour (so the row will have 24 elements) and each of the rows will be assigned to one day of the
month (let's assume that each month has 31 days, so you need 31 rows). Here's the
appropriate pair of comprehensions (h is for hour, d for day):

The whole matrix is filled with zeros now. You can assume that it's updated automatically using
special hardware agents. The thing you have to do is to wait for the matrix to be filled with
measurements.
Now it's time to determine the monthly average noon temperature. Add up all 31 readings
recorded at noon and divide the sum by 31. You can assume that the midnight temperature is
stored first. Here's the relevant code:

Note: the day variable used by the for loop is not a scalar ‒ each pass through
the temps matrix assigns it with the subsequent rows of the matrix; hence, it's a list. It has to
be indexed with 11 to access the temperature value measured at noon.

temps = [[0.0 for h in range(24)] for d in range(31)]

temps = [[0.0 for h in range(24)] for d in range(31)]
#
The matrix is magically updated here.
#

total = 0.0

for day in temps:
 total += day[11]

average = total / 31

print("Average temperature at noon:", average)

1
2
3
4
5
6
7
8
9
10
11
12
13
14

1
2
3
4
5
6
7
8
9
10
11
12
13

1

2

Now find the highest temperature during the whole month ‒ see the code:

NOTE

the day variable iterates through all the rows in the temps matrix;
the temp variable iterates through all the measurements taken in one day.

Now count the days when the temperature at noon was at least 20ºC:

Python does not limit the depth of list-in-list inclusion. Here you can see an example of a three-
dimensional array:

Imagine a hotel. It's a huge hotel consisting of three buildings, 15 floors each. There are 20
rooms on each floor. For this, you need an array which can collect and process information on
the occupied/free rooms.

temps = [[0.0 for h in range(24)] for d in range(31)]
#
The matrix is magically updated here.
#

highest = -100.0

for day in temps:
 for temp in day:
 if temp > highest:
 highest = temp

print("The highest temperature was:", highest)

temps = [[0.0 for h in range(24)] for d in range(31)]
#
The matrix is magically updated here.
#

hot_days = 0

for day in temps:
 if day[11] > 20.0:
 hot_days += 1

print(hot_days, "days were hot.")

rooms =
[[[False for r in range(20)] for f in range(15)] for t in range(3)]

1

2

1
2

1
2

1
2
3
4
5
6

First step ‒ the type of the array's elements. In this case, a Boolean value (True/False) would
fit.
Step two ‒ calm analysis of the situation. Summarize the available information: three buildings,
15 floors, 20 rooms.
Now you can create the array:

The first index (0 through 2) selects one of the buildings; the second (0 through 14) selects the
floor, the third (0 through 19) selects the room number. All rooms are initially free.
Now you can book a room for two newlyweds: in the second building, on the tenth floor, room
14:

and release the second room on the fifth floor located in the first building:

Check if there are any vacancies on the 15th floor of the third building:

The vacancy variable contains 0 if all the rooms are occupied, or the number of available
rooms otherwise.
Congratulations! You've made it to the end of the module. Keep up the good work!

rooms =
[[[False for r in range(20)] for f in range(15)] for t in range(3)]

rooms[1][9][13] = True

rooms[0][4][1] = False

vacancy = 0

for room_number in range(20):
 if not rooms[2][14][room_number]:
 vacancy += 1

1
2
3

3.7 SECTION SUMMARY
1. List comprehension allows you to create new lists from existing ones in a concise and
elegant way. The syntax of a list comprehension looks as follows:
[expression for element in list if conditional]

which is actually an equivalent of the following code:
for element in list:

 if conditional:

 expression

Here's an example of a list comprehension ‒ the code creates a five-element list filled with the
first five natural numbers raised to the power of 3:

2. You can use nested lists in Python to create matrices (i.e. two-dimensional lists). For
example:

cubed = [num ** 3 for num in range(5)]
print(cubed) # outputs: [0, 1, 8, 27, 64]

1
2
3
4
5
6
7
8
9
10
11

3. You can nest as many lists in lists as you want, thereby creating n-dimensional lists, e.g.
three-, four- or even sixty-four-dimensional arrays. For example:

A four-column/four-row table ‒ a two dimensional array (4x4)

table = [[":(", ":)", ":(", ":)"],
 [":)", ":(", ":)", ":)"],
 [":(", ":)", ":)", ":("],
 [":)", ":)", ":)", ":("]]

print(table)
print(table[0][0]) # outputs: ':('
print(table[0][3]) # outputs: ':)'

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Cube – a three-dimensional array (3x3x3)

cube = [[[':(', 'x', 'x'],
 [':)', 'x', 'x'],
 [':(', 'x', 'x']],

 [[':)', 'x', 'x'],
 [':(', 'x', 'x'],
 [':)', 'x', 'x']],

 [[':(', 'x', 'x'],
 [':)', 'x', 'x'],
 [':)', 'x', 'x']]]

print(cube)
print(cube[0][0][0]) # outputs: ':('
print(cube[2][2][0]) # outputs: ':)'

MODULE 4: FUNCTIONS, TUPLES, DICTIONARIES,
EXCEPTIONS, AND DATA PROCESSING

SECTION 4.1 – FUNCTIONS
Welcome to Module 4! In this section, you will learn how to create, use, and call your own
functions. Let's start!

4.1.1 Why do we need functions?
You've come across functions many times so far, but the view on their merits that we have
given you has been rather one-sided. You've only invoked functions by using them as tools to
make life easier, and to simplify time-consuming and tedious tasks.
When you want some data to be printed on the console, you use print(). When you want to
read the value of a variable, you use input(), coupled with either int() or float().
You've also made use of some methods, which are in fact functions, but declared in a very
specific way.
Now you'll learn how to write and use your own functions. We'll write several functions
together, from the very simple to the rather complex, which will require your focus and
attention.
It often happens that a particular piece of code is repeated many times in your program. It's
repeated either literally, or with only a few minor modifications, consisting of the use of other
variables in the same algorithm. It also happens that a programmer cannot resist simplifying
their work, and begins to clone such pieces of code using the clipboard and copy-paste
operations.
It could end up as greatly frustrating when suddenly it turns out that there was an error in the
cloned code. The programmer will have a lot of drudgery to find all the places that need
corrections. There's also a high risk of the corrections causing errors.
We can now define the first condition which can help you decide when to start writing your own
functions: if a particular fragment of the code begins to appear in more than one place,
consider the possibility of isolating it in the form of a function invoked from the points
where the original code was placed before.
It may happen that the algorithm you're going to implement is so complex that your code
begins to grow in an uncontrolled manner, and suddenly you notice that you're not able to
navigate through it so easily anymore.
You can try to cope with the issue by commenting the code extensively, but soon you find that
this dramatically worsens your situation ‒ too many comments make the code larger and
harder to read. Some say that a well-written function should be viewed entirely in one
glance.
A good, attentive developer divides the code (or more accurately: the problem) into well-
isolated pieces, and encodes each of them in the form of a function.

This considerably simplifies the work of the program, because each piece of code can be
encoded separately, and tested separately. The process described here is often
called decomposition.
We can now state the second condition: if a piece of code becomes so large that reading
and understating it may cause a problem, consider dividing it into separate, smaller
problems, and implement each of them in the form of a separate function.
This decomposition continues until you get a set of short functions, easy to understand and
test.

4.1.2 Decomposition
It often happens that the problem is so large and complex that it cannot be assigned to a single
developer, and a team of developers have to work on it. The problem must be split between
several developers in a way that ensures their efficient and seamless cooperation.
It seems inconceivable that more than one programmer should write the same piece of code at
the same time, so the job has to be dispersed among all the team members.
This kind of decomposition has a different purpose to the one described previously ‒ it's not
only about sharing the work, but also about sharing the responsibility among many
developers.
Each of them writes a clearly defined and described set of functions, which when combined
into the module (we'll tell you about this a bit later) will give the final product.
This leads us directly to the third condition: if you're going to divide the work among multiple
programmers, decompose the problem to allow the product to be implemented as a set
of separately written functions packed together in different modules.

4.1.3 Where do functions come from?
In general, functions come from at least three places:

From Python itself ‒ numerous functions (like print()) are an integral part of Python, and
are always available without any additional effort on behalf of the programmer; we call these
functions built-in functions;

From Python's preinstalled modules ‒ a lot of functions, very useful ones, but used
significantly less often than built-in ones, are available in a number of modules installed
together with Python; the use of these functions requires some additional steps from the
programmer in order to make them fully accessible (we'll tell you about this in a while);

Directly from your code ‒ you can write your own functions, place them inside your code,
and use them freely;

There is one other possibility, but it's connected with classes, so we'll omit it for now.

1
2
3
4
5
6
7
8
9

4.1.4 Your first function
Take a look at the following snippet:

It's rather simple, but we only want it to be an example of transforming a repeating part of a
code into a function.
The messages sent to the console by the print() function are always the same. Of course,
there's nothing really bad in such a code, but try to imagine what you would have to do if your
boss asked you to change the message to make it more polite, e.g. to start it with the
phrase "Please".
It seems that you'd have to spend some time changing all the occurrences of the message
(you'd use a clipboard, of course, but it wouldn't make your life much easier). It's obvious that
you'd probably make some mistakes during the amendment process, and you (and your boss)
would get a bit frustrated.
Is it possible to separate such a repeatable part of the code, name it, and make it reusable? It
would mean that a change made once in one place would be propagated to all the places
where it's used.
Of course, a code like this should work only when it's explicitly launched.
Yes, it's possible. This is exactly what functions are for.
You need to define it. The word define is significant here.
This is what the simplest function definition looks like:
def function_name():

 function_body

It always starts with the keyword def (for define)
next after def goes the name of the function (the rules for naming functions are
exactly the same as for naming variables)
after the function name, there's a place for a pair of parentheses (they contain nothing
here, but that will change soon)
the line has to be ended with a colon;
the line directly after def begins the function body ‒ a couple (at least one) of
necessarily nested instructions, which will be executed every time the function is
invoked; note: the function ends where the nesting ends, so you have to be careful.

We're ready to define our prompting function. We'll name it message ‒ here it is:

print("Enter a value: ")
a = int(input())

print("Enter a value: ")
b = int(input())

print("Enter a value: ")
c = int(input())

1
2
3

1
2
3
4
5

1
2
3
4
5
6

The function is extremely simple, but fully usable. We've named it message, but you can label
it according to your taste. Let's use it.
Our code contains the function definition now:

Note: we don't use the function at all ‒ there's no invocation of it inside the code.
When you run it, you see the following output:
We start here.

We end here.

This means that Python reads the function's definitions and remembers them, but won't launch
any of them without your permission.
We've modified the code now ‒ we've inserted the function's invocation between the start
and end messages:

The output looks different now:
We start here.

Enter a value:

We end here.

Test the code, modify it, experiment with it.

def message():
 print("Enter a value: ")

def message():
 print("Enter a value: ")
print("We start here.")
print("We end here.")

def message():
 print("Enter a value: ")
print("We start here.")
message()
print("We end here.")

1
2
3
4
5
6

4.1.5 How functions work
Look at the picture on the right.
It tries to show you the whole process:

when you invoke a function, Python remembers the place where it happened
and jumps into the invoked function;
the body of the function is then executed;
reaching the end of the function forces Python to return to the place directly after the
point of invocation.

There are two, very important, catches. Here's the first of them:
You mustn't invoke a function which is not known at the moment of invocation.
Remember – Python reads your code from top to bottom. It's not going to look ahead in order
to find a function you forgot to put in the right place ("right" means "before invocation".)
We've inserted an error into this code ‒ can you see the difference?

We've moved the function to the end of the code. Is Python able to find it when the execution
reaches the invocation?
No, it isn't. The error message will read:
NameError: name 'message' is not defined

Don't try to force Python to look for functions you didn't deliver at the right time.
The second catch sounds a little simpler:
You mustn't have a function and a variable of the same name.
The following snippet is erroneous:

print("We start here.")
message()
print("We end here.")
def message():
 print("Enter a value: ")

1
2
3
4

1
2
3
4
5
6

1
2
3
4
5
6
7
8
9

Assigning a value to the name message causes Python to forget its previous role. The function
named message becomes unavailable.
Fortunately, you're free to mix your code with functions ‒ you're not obliged to put all your
functions at the top of your source file.
Look at the snippet:

It may look strange, but it's completely correct, and works as intended.
Let's return to our primary example, and employ the function for the right job, like here:

Modifying the prompting message is now easy and clear – you can do it by changing the
code in just one place ‒ inside the function's body.
Try it yourself.

def message():
 print("Enter a value: ")
message = 1

print("We start here.")
def message():
 print("Enter a value: ")
message()
print("We end here.")

def message():
 print("Enter a value: ")
message()
a = int(input())
message()
b = int(input())
message()
c = int(input())

1
2
3
4

1
2
3
4
5

4.1 SECTION SUMMARY
1. A function is a block of code that performs a specific task when the function is called
(invoked). You can use functions to make your code reusable, better organized, and more
readable. Functions can have parameters and return values.
2. There are at least four basic types of functions in Python:
built-in functions which are an integral part of Python (such as the print() function). You
can see a complete list of built-in Python functions at
https://docs.python.org/3/library/functions.html.
the ones that come from pre-installed modules (you'll learn about them in the Python
Essentials 2 course)
user-defined functions which are written by users for users ‒ you can write your own
functions and use them freely in your code,
the lambda functions (you'll learn about them in the Python Essentials 2 course.)
3. You can define your own function using the def keyword and the following syntax:
def your_function(optional parameters):

 # the body of the function

You can define a function which doesn't take any arguments, e.g.:

You can define a function which takes arguments, too, just like the following one-parameter
function:

We'll tell you more about parametrized functions in the next section. Don't worry.

def message(): # defining a function
 print("Hello") # body of the function
message() # calling the function

def hello(name): # defining a function
 print("Hello,", name) # body of the function
name = input("Enter your name: ")
hello(name) # calling the function

https://docs.python.org/3/library/functions.html

1
2
3
4

1
2
3
4
5

4.1 SECTION QUIZ
Question 1: The input() function is an example of a:
a) user-defined function
b) built-in function
Question 2: What happens when you try to invoke a function before you define it? Example:

Question 3: What will happen when you run the following code?

Check

hi()
def hi():
 print("hi!")

def hi():
 print("hi")

hi(5)

SECTION 4.2 – HOW FUNCTIONS COMMUNICATE WITH
THEIR ENVIRONMENT
In this section, you will learn about parameterless and parameterized functions, as well as how
to write one-, two- and three-parameter functions and pass arguments to them. Let's begin!

1
2
3

4.2.1 Parameterized functions
The function's full power reveals itself when it can be equipped with an interface that is able to
accept data provided by the invoker. Such data can modify the function's behavior, making it
more flexible and adaptable to changing conditions.
A parameter is actually a variable, but there are two important factors that make parameters
different and special:

parameters exist only inside functions in which they have been defined, and the
only place where the parameter can be defined is a space between a pair of
parentheses in the def statement;
assigning a value to the parameter is done at the time of the function's invocation,
by specifying the corresponding argument.

def function(parameter):

 ###

Don't forget:

parameters live inside functions (this is their natural environment)
arguments exist outside functions, and are carriers of values passed to
corresponding parameters.

There is a clear and unambiguous frontier between these two worlds.
Let's enrich the function with just one parameter ‒ we're going to use it to show the user the
number of a value the function asks for.
We have to rebuild the def statement ‒ this is what it looks like now:
def message(number):

 ###

The definition specifies that our function operates on just one parameter named number. You
can use it as an ordinary variable, but only inside the function ‒ it isn't visible anywhere else.
Let's now improve the function's body:

We've made use of the parameter. Note: we haven't assigned the parameter with any value. Is
it correct?
Yes, it is.
A value for the parameter will arrive from the function's environment.
Remember: specifying one or more parameters in a function's definition is also a
requirement, and you have to fulfil it during invocation. You must provide as many arguments
as there are defined parameters.
Failure to do so will cause an error.

def message(number):
 print("Enter a number:", number)

1
2
3
4

1
2
3
4
5
6

Try to run the code.
This is what you'll see in the console:
TypeError: message() missing 1 required positional argument: 'number'

This looks better, for sure:

Moreover, it behaves better. The code will produce the following output:
Enter a number: 1

Can you see how it works? The value of the argument used during invocation (1) has been
passed into the function, setting the initial value of the parameter named number.
We have to make you sensitive to one important circumstance.
It's legal, and possible, to have a variable named the same as a function's parameter.
The snippet illustrates the phenomenon:

A situation like this activates a mechanism called shadowing:

parameter x shadows any variable of the same name, but...
... only inside the function defining the parameter.

The parameter named number is a completely different entity from the variable
named number.
This means that the previous snippet will produce the following output:
Enter a number: 1

1234

A function can have as many parameters as you want, but the more parameters you have,
the harder it is to memorize their roles and purposes.
Let's modify the function ‒ it has two parameters now:
def message(what, number):

 print("Enter", what, "number", number)

This also means that invoking the function will require two arguments.
The first new parameter is intended to carry the name of the desired value.

def message(number):
 print("Enter a number:", number)
message(1)

def message(number):
 print("Enter a number:", number)
number = 1234
message(1)
print(number)

1
2
3
4
5
6

Here it is:

This is the output you're about to see:
Enter telephone number 11

Enter price number 5

Enter number number number

Run the code, modify it, add more parameters, and see how this affects the output.

def message(what, number):
 print("Enter", what, "number", number)
message("telephone", 11)
message("price", 5)
message("number", "number")

1
2
3
4
5

1
2
3
4
5
6
7

1
2
3
4
5
6
7

4.2.2 Positional parameter passing
A technique which assigns the ith (first, second, and so on) argument to the ith (first, second,
and so on) function parameter is called positional parameter passing, while arguments
passed in this way are named positional arguments.
You've used it already, but Python can offer a lot more. We're going to tell you about it now.

Note: positional parameter passing is intuitively used by people in many social occasions. For
example, it may be generally accepted that when we introduce ourselves we mention our first
name(s) before our last name, e.g. "My name's John Doe."
Incidentally, Hungarians do it in reverse order.
Let's implement that social custom in Python. The following function will be responsible for
introducing somebody:

Can you guess the output? Run the code and find out if you're right.
Now imagine that the same function is being used in Hungary. In this case, the code would
look like this:

The output will look different. Can you guess it?
Run the code to see if you're right here, too. Are you surprised?
Can you make the function more culture-independent?

def my_function(a, b, c):
 print(a, b, c)

my_function(1, 2, 3)

def introduction(first_name, last_name):
 print("Hello, my name is", first_name, last_name)

introduction("Luke", "Skywalker")
introduction("Jesse", "Quick")
introduction("Clark", "Kent")

def introduction(first_name, last_name):
 print("Hello, my name is", first_name, last_name)

introduction("Skywalker", "Luke")
introduction("Quick", "Jesse")
introduction("Kent", "Clark")

1
2
3
4
5
6

1
2
3
4
5

4.2.3 Keyword argument passing
Python offers another convention for passing arguments, where the meaning of the
argument is dictated by its name, not by its position ‒ it's called keyword argument
passing.
Take a look at the snippet:

The concept is clear ‒ the values passed to the parameters are preceded by the target
parameters' names, followed by the = sign.
The position doesn't matter here ‒ each argument's value knows its destination on the basis of
the name used.
You should be able to predict the output. Run the code to check if you're right.
Of course, you mustn't use a non-existent parameter name.
The following snippet will cause a runtime error:

This is what Python will tell you:
TypeError: introduction() got an unexpected keyword argument
'surname'

Try it out yourself.

def introduction(first_name, last_name):
 print("Hello, my name is", first_name, last_name)

introduction(first_name = "James", last_name = "Bond")
introduction(last_name = "Skywalker", first_name = "Luke")

def introduction(first_name, last_name):
 print("Hello, my name is", first_name, last_name)

introduction(surname="Skywalker", first_name="Luke")

1
2
3

1
2

1
2

1
2

4.2.4 Mixing positional and keyword arguments
You can mix both styles if you want ‒ there is only one unbreakable rule: you have to
put positional arguments before keyword arguments.
If you think for a moment, you'll certainly guess why.
To show you how it works, we'll use the following simple three-parameter function:

Its purpose is to evaluate and present the sum of all its arguments.
The function, when invoked in the following way:

will output:
1 + 2 + 3 = 6

It was ‒ as you may suspect ‒ a pure example of positional argument passing.
Of course, you can replace such an invocation with a purely keyword variant, like this:

Our program will output a line like this:
2 + 3 + 1 = 6

Note the order of the values.
Let's try to mix both styles now.
Look at the following function invocation:

Let's analyze it:

the argument (3) for the a parameter is passed using the positional way;
the arguments for c and b are specified as keyword ones.

This is what you'll see in the console:
3 + 2 + 1 = 6

Be careful, and beware of mistakes. If you try to pass more than one value to one argument, all
you'll get is a runtime error.

def adding(a, b, c):
 print(a, "+", b, "+", c, "=", a + b + c)

adding(1, 2, 3)

adding(c = 1, a = 2, b = 3)

adding(3, c = 1, b = 2)

1
2

1
2

Look at the following invocation – it seems that we've tried to set a twice:

Python's response:
TypeError: adding() got multiple values for argument 'a'

Look at the following snippet. A code like this is fully correct, but it doesn't make much sense:

Everything is right, but leaving in just one keyword argument looks a bit weird ‒ what do you
think?

adding(3, a = 1, b = 2)

adding(4, 3, c = 2)

1
2
3

1
2

1
2

1
2

1
2
3

4.2.5 Parametrized functions – more details
It happens at times that a particular parameter's values are in use more often than others.
Such arguments may have their default (predefined) values taken into consideration when
their corresponding arguments have been omitted.
They say that the most popular English last name is Smith. Let's try to take this into account.
The default parameter's value is set using clear and pictorial syntax:

You only have to extend the parameter's name with the = sign, followed by the default value.
Let's invoke the function as usual:

Can you guess the output of the program? Run it and check if you're right.
And? Everything looks the same, but when you invoke the function in a way that looks a bit
suspicious at first sight, like this:

or this:

there will be no error, and both invocations will succeed, while the console will show the
following output:
Hello, my name is Henry Smith

Hello, my name is William Smith

Test it.
You can go further if it's useful. Both parameters have their default values now, look at the
following code:

This makes the following invocation absolutely valid:

def introduction(first_name, last_name="Smith"):
 print("Hello, my name is", first_name, last_name)

introduction("James", "Doe")

introduction("Henry")

introduction(first_name="William")

def introduction(first_name="John", last_name="Smith"):
 print("Hello, my name is", first_name, last_name)

1
2

1
2

And this is the expected output:
Hello, my name is John Smith

If you use one keyword argument, the remaining one will take the default value:

The output is:
Hello, my name is John Hopkins

Test it.
Congratulations ‒ you have just learned some basic techniques for communicating with
functions.

introduction()

introduction(last_name="Hopkins")

1
2
3
4
5

1
2
3
4
5
6

1
2
3
4
5
6
7
8

4.2 SECTION SUMMARY
1. You can pass information to functions by using parameters. Your functions can have as
many parameters as you need.
An example of a one-parameter function:

An example of a two-parameter function:

An example of a three-parameter function:

2. You can pass arguments to a function using the following techniques:

positional argument passing in which the order of arguments passed matters (Ex. 1)
keyword (named) argument passing in which the order of arguments passed doesn't
matter (Ex. 2)
a mix of positional and keyword argument passing (Ex. 3.)

def hi(name):
 print("Hi,", name)

hi("Greg")

def hi_all(name_1, name_2):
 print("Hi,", name_2)
 print("Hi,", name_1)

hi_all("Sebastian", "Konrad")

def address(street, city, postal_code):
 print("Your address is:", street, "St.,", city, postal_code)

s = input("Street: ")
p_c = input("Postal Code: ")
c = input("City: ")
address(s, c, p_c)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

1
2
3
4
5
6

1
2
3
4
5

6

It's important to remember that positional arguments mustn't follow keyword arguments.
That's why if you try to run the following snippet:

Python will not let you do it by signaling a SyntaxError.
3. You can use the keyword argument-passing technique to pre-define a value for a given
argument:

Ex. 1
def subtra(a, b):
 print(a – b)

subtra(5, 2) # outputs: 3
subtra(2, 5) # outputs: -3

Ex. 2
def subtra(a, b):
 print(a – b)

subtra(a=5, b=2) # outputs: 3
subtra(b=2, a=5) # outputs: 3

Ex. 3
def subtra(a, b):
 print(a – b)

subtra(5, b=2) # outputs: 3
subtra(5, 2) # outputs: 3

def subtra(a, b):
 print(a – b)

subtra(5, b=2) # outputs: 3
subtra(a=5, 2) # Syntax Error

def name(first_name, last_name="Smith"):
 print(first_name, last_name)

name("Andy") # outputs: Andy Smith
name("Betty", "Johnson") # outputs: Betty Johnson (the keyword
argument replaced by "Johnson")

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

4.2 SECTION QUIZ
Question 1: What is the output of the following snippet?

Question 2: What is the output of the following snippet?

Question 3: What is the output of the following snippet?

Question 4: What is the output of the following snippet?

Check

def intro(a="James Bond", b="Bond"):
 print("My name is"".", a + ".")

intro()

def intro(a="James Bond", b="Bond"):
 print("My name is", b + ".", a + ".")

intro(b="Sean Connery")

def intro(a, b="Bond"):
 print("My name is", b + ".", a + ".")

intro("Susan")

def add_numbers(a, b=2, c):
 print(a + b + c)

add_numbers(a=1, c=3)

SECTION 4.3 – RETURNING A RESULT FROM A FUNCTION
In this part of the course, you will learn about the effects and results of functions,
the return expression, and the None value. You will also learn how to pass lists as function
arguments, how to return lists as function results, and how to assign function results to
variables. Let's go!

1
2
3
4
5
6
7
8
9

4.3.1 Effects and results: the return instruction
All the previously presented functions have some kind of effect ‒ they produce some text and
send it to the console.
Of course, functions ‒ like their mathematical siblings ‒ may have results.
To get functions to return a value (but not only for this purpose) you use
the return instruction.
This word gives you a full picture of its capabilities. Note: it's a Python keyword.
The return instruction has two different variants ‒ let's consider them separately.

return without an expression
Let's consider the following function:

When invoked without any arguments:
happy_new_year()

the function causes a little noise ‒ the output will look like this:
Three...

Two...

One...

Happy New Year!

Providing False as an argument:
happy_new_year(False)

will modify the function's behavior ‒ the return instruction will cause its termination just before
the wishes ‒ this is the updated output:
Three...

Two...

One...

def happy_new_year(wishes = True):
 print("Three...")
 print("Two...")
 print("One...")
 if not wishes:
 return

 print("Happy New Year!")

1
2
3

1
2
3
4
5
6
7

return with an expression
The second return variant is extended with an expression:

There are two consequences of using it:

it causes the immediate termination of the function's execution (nothing new
compared to the first variant)
moreover, the function will evaluate the expression's value and will return it (hence
the name once again) as the function's result.

Yes, we already know ‒ this example isn't really sophisticated:

The snippet writes the following text to the console:
The boring_function has returned its result. It's:
123

Let's investigate it for a while.
Analyze this figure:

The return instruction, enriched with the expression (the expression is very simple here),
"transports" the expression's value to the place where the function has been invoked.
The result may be freely used here, e.g. to be assigned to a variable.
It may also be completely ignored and lost without a trace.
Note: we're not being too polite here — the function returns a value, and we ignore it (we don't
use it in any way):

def function():
 return expression

def boring_function():
 return 123

x = boring_function()

print("The boring_function has returned its result. It's:", x)

1
2
3
4
5
6
7
8

The program produces the following output:
This lesson is interesting!

'Boredom Mode' ON.

This lesson is boring...

Is it punishable? Not at all.
The only disadvantage is that the result has been irretrievably lost.
Don't forget:

you are always allowed to ignore the function's result, and be satisfied with the
function's effect (if the function has any)
if a function is intended to return a useful result, it must contain the second variant of
the return instruction.

Wait a minute ‒ does this mean that there are useless results, too? Yes, in some sense.

def boring_function():
 print("'Boredom Mode' ON!")
 return(123)

print("This lesson is interesting!")
boring_function()
print("This lesson is boring!")

1
2
3
4

1
2
3
4

1
2
3

4.3.2 A few words about None
Let us introduce you to a very curious value (to be honest, a none value) named None.
Its data doesn't represent any reasonable value ‒ actually, it's not a value at all; hence,
it mustn't take part in any expressions.
For example, a snippet like this:
print(None + 2)

will cause a runtime error, described by the following diagnostic message:
TypeError: unsupported operand type(s) for +:

 'NoneType' and 'int'

NOTE None is a keyword.
There are only two kinds of circumstances when None can be safely used:

when you assign it to a variable (or return it as a function's result)
when you compare it with a variable to diagnose its internal state.

Just like here:

Don't forget this: if a function doesn't return a certain value using a return expression clause,
it is assumed that it implicitly returns None.
Let's test it.
Take a look at the following code.

It's obvious that the strange_function function returns True when its argument is even.
What does it return otherwise?
We can use the following code to check it:

This is what we see in the console:

value = None
if value is None:
 print("Sorry, you don't carry any value")

def strange_function(n):
 if(n % 2 == 0):
 return True

print(strange_function(2))
print(strange_function(1))

True

None

Don't be surprised next time you see None as a function result ‒ it may be the symptom of a
subtle mistake inside the function.

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8
9

4.3.3 Effects and results: lists and functions
There are two additional questions that should be answered here.
The first is: may a list be sent to a function as an argument?
Of course it may! Any entity recognizable by Python can play the role of a function argument,
although it has to be assured that the function is able to cope with it.
So, if you pass a list to a function, the function has to handle it like a list.
A function like this one here:

and invoked like this:
print(list_sum([5, 4, 3]))

will return 12 as a result, but you should expect problems if you invoke it in this risky way:
print(list_sum(5))

Python's response will be unequivocal:
TypeError: 'int' object is not iterable

This is caused by the fact that a single integer value mustn't be iterated through by
the for loop.
The second question is: may a list be a function result?
Yes, of course! Any entity recognizable by Python can be a function result.
Look at the following code:

The program's output will look like this:

def list_sum(lst):
 s = 0

 for elem in lst:
 s += elem

 return s

def strange_list_fun(n):
 strange_list = []

 for i in range(0, n):
 strange_list.insert(0, i)

 return strange_list
print(strange_list_fun(5))

[4, 3, 2, 1, 0]

Now you can write functions with and without results.
Let's dive a little deeper into the issues connected with variables in functions. This is essential
for creating effective and safe functions.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

LAB 26 A leap year: writing your own functions
Your task is to write and test a function which takes one argument (a year) and returns True if
the year is a leap year, or False otherwise.
The seed of the function is already sown in the following skeleton code.
Note: we've also prepared a short testing code, which you can use to test your function.
The code uses two lists ‒ one with the test data, and the other containing the expected results.
The code will tell you if any of your results are invalid.

Code

Hint
Sample Solution

def is_year_leap(year):
 #
 # Write your code here.
 #

test_data = [1900, 2000, 2016, 1987]
test_results = [False, True, True, False]
for i in range(len(test_data)):
 yr = test_data[i]
 print(yr,"->",end="")
 result = is_year_leap(yr)
 if result == test_results[i]:
 print("OK")
 else:
 print("Failed")

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

LAB 27 How many days: writing and using your own functions
Your task is to write and test a function which takes two arguments (a year and a month) and
returns the number of days for the given year-month pair (while only February is sensitive to
the year value, your function should be universal).
The initial part of the function is ready. Now, convince the function to return None if its
arguments don't make sense.
Of course, you can (and should) use the previously written and tested function (LAB 26). It may
be very helpful. We encourage you to use a list filled with the months' lengths. You can create
it inside the function ‒ this trick will significantly shorten the code.
We've prepared a testing code. Expand it to include more test cases.

Code

Hint
Sample Solution

def is_year_leap(year):
 #
 # Your code from the previous LAB.
 #

def days_in_month(year, month):
 #
 # Write your new code here.
 #

test_years = [1900, 2000, 2016, 1987]
test_months = [2, 2, 1, 11]
test_results = [28, 29, 31, 30]
for i in range(len(test_years)):
 yr = test_years[i]
 mo = test_months[i]
 print(yr, mo, "->", end="")
 result = days_in_month(yr, mo)
 if result == test_results[i]:
 print("OK")
 else:
 print("Failed")

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

LAB 28 Day of the year: writing and using your own functions
Your task is to write and test a function which takes three arguments (a year, a month, and a
day of the month) and returns the corresponding day of the year, or returns None if any of the
arguments is invalid.
Use the previously written and tested functions. Add your own test cases to the code.

Code

Hint
Sample Solution

def is_year_leap(year):
 #
 # Your code from the previous lab.
 #

def days_in_month(year, month):
 #
 # Your code from the previous lab.
 #

def day_of_year(year, month, day):
 #
 # Write your new code here.
 #

print(day_of_year(2000, 12, 31))

1
2
3
4
5
6
7
8
9
10

LAB 29 Prime numbers ‒ how to find them
A natural number is prime if it is greater than 1 and has no divisors other than 1 and itself.
Complicated? Not at all. For example, 8 isn't a prime number, as you can divide it by 2 and 4
(we can't use divisors equal to 1 and 8, as the definition prohibits this).
On the other hand, 7 is a prime number, as we can't find any legal divisors for it.
Your task is to write a function checking whether a number is prime or not.
The function:

is called is_prime;
takes one argument (the value to check)
returns True if the argument is a prime number, and False otherwise.

Hint: try to divide the argument by all subsequent values (starting from 2) and check the
remainder ‒ if it's zero, your number cannot be a prime; think carefully about when you should
stop the process.
If you need to know the square root of any value, you can utilize the ** operator. Remember:
the square root of x is the same as x0.5.
Complete the code.
Run your code and check whether your output is the same as ours.

Expected output:
2 3 5 7 11 13 17 19

Code

Hint
Sample Solution

def is_prime(num):
 #
 # Write your code here.
 #

for i in range(1, 20):
 if is_prime(i + 1):
 print(i + 1, end=" ")
print()

LAB 30 Converting fuel consumption
A car's fuel consumption may be expressed in many different ways. For example, in Europe, it
is shown as the amount of fuel consumed per 100 kilometers.
In the USA, it is shown as the number of miles traveled by a car using one gallon of fuel.
Your task is to write a pair of functions converting l/100km into mpg, and vice versa.
The functions:

are
named liters_100km_to_miles_gallon and miles_gallon_to_liters_100km
 respectively;
take one argument (the value corresponding to their names)

Complete the following code and run it to check whether your output is the same as ours.
Here is some information to help you:

1 American mile = 1609.344 meters;
1 American gallon = 3.785411784 liters.

Expected output:
60.31143162393162

31.36194444444444

23.52145833333333

3.9007393587617467

7.490910297239916

10.009131205673757

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Hint
Sample Solution

def liters_100km_to_miles_gallon(liters):
 #
< # Write your code here.
 #

def miles_gallon_to_liters_100km(miles):
 #
 # Write your code here.
 #

print(liters_100km_to_miles_gallon(3.9))
print(liters_100km_to_miles_gallon(7.5))
print(liters_100km_to_miles_gallon(10.))
print(miles_gallon_to_liters_100km(60.3))
print(miles_gallon_to_liters_100km(31.4))
print(miles_gallon_to_liters_100km(23.5))

1
2
3
4
5
6
7
8
9
10
11

1
2
3
4
5
6
7

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

4.3 SECTION SUMMARY
1. You can use the return keyword to tell a function to return some value.
The return statement exits the function, e.g.:

2. The result of a function can be easily assigned to a variable, e.g.:

Look at the difference in output in the following two examples:

def multiply(a, b):
 return a * b

print(multiply(3, 4)) # outputs: 12

def multiply(a, b):
 return

print(multiply(3, 4)) # outputs: None

def wishes():
 return "Happy Birthday!"

w = wishes()

print(w) # outputs: Happy Birthday!

Example 1
def wishes():
 print("My Wishes")
 return "Happy Birthday"

wishes() # outputs: My Wishes

Example 2
def wishes():
 print("My Wishes")
 return "Happy Birthday"

print(wishes())

outputs: My Wishes
Happy Birthday

1
2
3
4
5
6

1
2
3
4
5
6
7
8

3. You can use a list as a function's argument, e.g.:

4. A list can be a function result, too, e.g.:

def hi_everybody(my_list):
 for name in my_list:
 print("Hi,", name)

hi_everybody(["Adam", "John", "Lucy"])

def create_list(n):
 my_list = []
 for i in range(n):
 my_list.append(i)
 return my_list

print(create_list(5))

1
2
3
4
5
6

1
2
3
4
5
6
7
8
9
10

1
2
3
4
5
6
7
8
9

4.3 SECTION QUIZ
Question 1: What is the output of the following snippet?

Question 2: What is the output of the following snippet?

Question 3: What is the output of the following snippet?

Question 4: What is the output of the following snippet?

def hi():
 return
 print("Hi!")

hi()

def is_int(data):
 if type(data) == int:
 return True
 elif type(data) == float:
 return False

print(is_int(5))
print(is_int(5.0))
print(is_int("5"))

def even_num_lst(ran):
 lst = []
 for num in range(ran):
 if num % 2 == 0:
 lst.append(num)
 return lst

print(even_num_lst(11))

1
2
3
4
5
6
7
8
9
10

Check

def list_updater(lst):
 upd_list = []
 for elem in lst:
 elem **= 2
 upd_list.append(elem)
 return upd_list

foo = [1, 2, 3, 4, 5]
print(list_updater(foo))

SECTION 4.4 – SCOPES IN PYTHON
In this part of the course, you will learn about scopes in Python, and the global keyword. By
the end of the section you will be able to distinguish between local and global variables, and
know how to utilize the mechanism of namespaces in your programs.

1
2
3
4
5
6
7

1
2
3
4
5
6
7
8

4.4.1 Functions and scopes
Let's start with a definition:
The scope of a name (e.g. a variable name) is the part of a code where the name is properly
recognizable.
For example, the scope of a function's parameter is the function itself. The parameter is
inaccessible outside the function.
Let's check it. Look at the following code. What will happen when you run it?

The program will fail when run. The error message will read:
NameError: name 'x' is not defined

This is to be expected.
We're going to conduct some experiments with you to show you how Python constructs
scopes, and how you can use these to your benefit.
Let's start by checking whether or not a variable created outside any function is visible inside
the functions. In other words, does a variable's name propagate into a function's body?
Look at the following code. Our guinea pig is there.

The result of the test is positive ‒ the code outputs:
Do I know that variable? 1

1

The answer is: a variable existing outside a function has scope inside the function's
body.
< has a very important exception. Let's try to find it.

Let's make a smaange to the code:

def scope_test():
 x = 123

scope_test()
print(x)

def my_function():
 print("Do I know that variable?", var)

var = 1
my_function()
print(var)

1
2
3
4
5
6
7
8
9

The result has changed, too ‒ the code produces a slightly different output now:
Do I know that variable? 2

1

What's happened?

the var variable created inside the function is not the same as when defined outside it ‒
it seems that there two different variables of the same name;
moreover, the function's variable shadows the variable coming from the outside world.

We can make the previous rule more precise and adequate:
A variable existing outside a function has scope inside the function's body, excluding
those which define a variable of the same name.
It also means that the scope of a variable existing outside a function is supported only
when getting its value (reading). Assigning a value forces the creation of the function's own
variable.
Make sure you understand this well and carry out your own experiments.

def my_function():
 var = 2
 print("Do I know that variable?", var)

var = 1
my_function()
print(var)

1
2
3

1
2
3
4
5
6
7
8
9
10

4.4.2 Functions and scopes: the global keyword
Hopefully, you should now have arrived at the following question: does this mean that a
function is not able to modify a variable defined outside it? This would create a lot of
discomfort.
Fortunately, the answer is no.
There's a special Python method which can extend a variable's scope in a way which
includes the function's body (even if you want not only to read the values, but also to modify
them).
Such an effect is caused by a keyword named global:

Using this keyword inside a function with the name (or names separated with commas) of a
variable (or variables), forces Python to refrain from creating a new variable inside the function
‒ the one accessible from outside will be used instead.
In other words, this name becomes global (it has global scope, and it doesn't matter whether
it's the subject of read or assign).
Look at the following code.

We've added global to the function.
The code now outputs:
Do I know that variable?

2

This should be sufficient evidence to show that the global keyword does what it promises.

global name
global name1, name2, ...

def my_function():
 global var
 var = 2
 print("Do I know that variable?", var)

var = 1
my_function()
print(var)

1
2
3
4
5
6
7
8
9
10

1
2
3
4
5
6
7
8
9
10
11
12

4.4.3 How the function interacts with its arguments
Now let's find out how the function interacts with its arguments.
The following code should teach you something. As you can see, the function changes the
value of its parameter. Does the change affect the argument?

Run the program and check.
The code's output is:
I got 1

I have 2

1

The conclusion is obvious ‒ changing the parameter's value doesn't propagate outside
the function (in any case, not when the variable is a scalar, like in the example).
This also means that a function receives the argument's value, not the argument itself. This is
true for scalars.
Is it worth checking how it works with lists (do you recall the peculiarities of assigning list slices
versus assigning lists as a whole?).
The following example will shed some light on the issue:

The code's output is:
Print #1: [2, 3]

def my_function(n):
 print("I got", n)
 n += 1
 print("I have", n)

var = 1
my_function(var)
print(var)

def my_function(my_list_1):
 print("Print #1:", my_list_1)
 print("Print #2:", my_list_2)
 my_list_1 = [0, 1]
 print("Print #3:", my_list_1)
 print("Print #4:", my_list_2)

my_list_2 = [2, 3]
my_function(my_list_2)
print("Print #5:", my_list_2)

1
2
3
4
5
6
7
8
9
10
11
12

Print #2: [2, 3]

Print #3: [0, 1]

Print #4: [2, 3]

Print #5: [2, 3]

It seems that the former rule still works.
Finally, can you see the difference in the example:

We don't change the value of the parameter my_list_1 (we already know it will not affect the
argument), but instead modify the list identified by it.
The output may be surprising. Run the code and check:
Print #1: [2, 3]

Print #2: [2, 3]

Print #3: [3]

Print #4: [3]

Print #5: [3]

Can you explain it?
Let's try:

if the argument is a list, then changing the value of the corresponding parameter doesn't
affect the list (remember: variables containing lists are stored in a different way than
scalars)
but if you change a list identified by the parameter (note: the list, not the parameter!), the
list will reflect the change.

It's time to write some example functions. You'll do that in the next section.

def my_function(my_list_1):
 print("Print #1:", my_list_1)
 print("Print #2:", my_list_2)
 del my_list_1[0] # Pay attention to this line.
 print("Print #3:", my_list_1)
 print("Print #4:", my_list_2)

my_list_2 = [2, 3]
my_function(my_list_2)
print("Print #5:", my_list_2)

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7

1
2
3
4
5
6
7
8

4.4 SECTION SUMMARY
1. A variable that exists outside a function has scope inside the function body (Example 1)
unless the function defines a variable of the same name (Example 2, and Example 3), e.g.:
Example 1:

Example 2:

Example 3:

2. A variable that exists inside a function has scope inside the function body (Example 4), e.g.:
Example 4:

var = 2

def mult_by_var(x):
 return x * var

print(mult_by_var(7)) # outputs: 14

def mult(x):
 var = 5
 return x * var

print(mult(7)) # outputs: 35

def mult(x):
 var = 7
 return x * var

var = 3
print(mult(7)) # outputs: 49

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8
9
10
11
12
13

3. You can use the global keyword followed by a variable name to make the variable's scope
global, e.g.:

def adding(x):
 var = 7
 return x + var

print(adding(4)) # outputs: 11
print(var) # NameError

var = 2
print(var) # outputs: 2

def return_var():
 global var
 var = 5
 return var

print(return_var()) # outputs: 5
print(var) # outputs: 5

1
2
3
4
5
6
7

1
2
3
4
5
6
7
8
9
10
11

1
2
3
4
5
6
7
8
9
10
11
12
13

4.4 SECTION QUIZ
Question 1: What is the output of the following snippet?

Question 2: What is the output of the following snippet?

Question 3: What is the output of the following snippet?

Question 4: What is the output of the following snippet?

def message():
 alt = 1
 print("Hello, World!")

print(alt)

a = 1

def fun():
 a = 2
 print(a)

fun()
print(a)

a = 1

def fun():
 global a
 a = 2
 print(a)

fun()
a = 3
print(a)

1
2
3
4
5
6
7
8
9
10
11
12
13

Check

a = 1

def fun():
 global a
 a = 2
 print(a)

a = 3
fun()
print(a)

SECTION 4.5 – CREATING MULTI-PARAMETER FUNCTIONS
Here we will analyze the following examples of multi-parameter functions: BMI calculator, Unit
Converter, Triangle Tester, Triangle Area Calculator, Factorial, Fibonacci, and recursive
functions.

1
2
3
4
5
6

4.5.1 Sample functions: Evaluating the BMI
Let's get started on a function to evaluate the Body Mass Index (BMI).
As you can see, the formula gets two values:

weight (originally in kilograms)
height (originally in meters)

It seems that this new function will have two parameters. Its name will be bmi, but if you
prefer any other name, use it instead.

Let's code the function:

The result produced by the sample invocation looks as follows:
19.283746556473833

The function fulfils our expectations, but it's a bit simple ‒ it assumes that the values of both
parameters are always meaningful. It's definitely worth checking if they're trustworthy.
Let's check them both and return None if any of them looks suspicious.

Evaluating BMI and converting imperial units to metric units
Look at the following code. There are two things we need to pay attention to.

def bmi(weight, height):
 return weight / height ** 2

print(bmi(52.5, 1.65))

1
2
3
4
5
6
7
8
9
10

1
2
3
4
5
6

First, the test invocation ensures that the protection works properly ‒ the output is:
None

Second, take a look at the way the backslash (\) symbol is used. If you use it in Python code
and end a line with it, it will tell Python to continue the line of code in the next line of code.
It can be particularly useful when you have to deal with long lines of code and you'd like to
improve code readability.
Okay, but there's something we omitted too easily ‒ the imperial measurements. This function
is not too useful for people accustomed to pounds, feet, and inches.
What can be done for them?
We can write two simple functions to convert imperial units to metric ones. Let's start with
pounds.
It is a well-known fact that 1 lb = 0.45359237 kg. We'll use this in our new function.
This is our helper function, named lb_to_kg:

The result of the test invocation looks good:
0.45359237

And now it's time for feet and inches: 1 ft = 0.3048 m, and 1 in = 2.54 cm = 0.0254
m.
The function we've written is named ft_and_inch_to_m:

def bmi(weight, height):
 if height < 1.0 or height > 2.5 or \
 weight < 20 or weight > 200:
 return None

 return weight / height ** 2

print(bmi(352.5, 1.65))

def lb_to_kg(lb):
 return lb * 0.45359237

print(lb_to_kg(1))

1
2
3
4
5
6

1
2

1
2
3
4
5
6

The result of a quick test is:0.3302
It looks as expected.
Note: we wanted to name the second parameter just in, not inch, but we couldn't. Do you
know why?
in is a Python keyword ‒ it cannot be used as a name.
Let's convert six feet into meters:

And this is the output:
1.8288000000000002

It's quite possible that sometimes you may want to use just feet without inches. Will Python
help you? Of course it will.
We've modified the code a bit:

Now the inch parameter has its default value equal to 0.0.
The code produces the following output ‒ this is what is expected:
1.8288000000000002

Finally, the code is able to answer the question: what is the BMI of a person 5'7" tall and
weighing 176 lbs?
This is the code we have built:

def ft_and_inch_to_m(ft, inch):
 return ft * 0.3048 + inch * 0.0254

print(ft_and_inch_to_m(1, 1))

print(ft_and_inch_to_m(6, 0))

def ft_and_inch_to_m(ft, inch = 0.0):
 return ft * 0.3048 + inch * 0.0254

print(ft_and_inch_to_m(6))

1
2
3
4
5
6
7
8
9
10

11
12
13
14
15
16

17

And the answer is:
27.565214082533313

Run the code and test it.

def ft_and_inch_to_m(ft, inch = 0.0):
 return ft * 0.3048 + inch * 0.0254

def lb_to_kg(lb):
 return lb * 0.4535923

def bmi(weight, height):
 if height < 1.0 or height > 2.5 or weight < 20 or weight
> 200:
 return None

 return weight / height ** 2

print(bmi(weight = lb_to_kg(176), height = ft_and_inch_to_m(5,
7)))

1
2
3
4
5
6
7
8
9
10
11
12
13

4.5.2 Sample functions: Triangles
Let's play with triangles now. We'll start with a function to check whether three sides of given
lengths can build a triangle.
We know from school that the sum of two arbitrary sides has to be longer than the third side.
It won't be a hard challenge. The function will have three parameters ‒ one for each side.
It will return True if the sides can build a triangle, and False otherwise. In this
case, is_a_triangle is a good name for such a function.
Look at the following code. You can find our function there. Run the program.

It seems that it works well ‒ these are the results:
True
False

Can we make it more compact? It looks a bit wordy.
This is a more compact version:

def is_a_triangle(a, b, c):
 if a + b <= c:
 return False
 if b + c <= a:
 return False
 if c + a <= b:
 return False
 return True

print(is_a_triangle(1, 1, 1))
print(is_a_triangle(1, 1, 3))

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7

1
2
3
4
5
6
7
8
9
10
11
12
13

Can we compact it even more?
Yes, we can – look:

We've negated the condition (reversed the relational operators and replaced ors with ands,
receiving a universal expression for testing triangles).
Let's install the function in a larger program. It'll ask the user for three values and make use of
the function.

Triangles and the Pythagorean theorem
Look at the following code. It asks the user for three values. Then it makes use of
the is_a_triangle function. The code is ready to run.

In the second step, we'll try to ensure that a certain triangle is a right-angle triangle.
We will need to make use of the Pythagorean theorem:

def is_a_triangle(a, b, c):
 if a + b <= c or b + c <= a or c + a <= b:
 return False
 return True

print(is_a_triangle(1, 1, 1))
print(is_a_triangle(1, 1, 3))

def is_a_triangle(a, b, c):
 return a + b > c and b + c > a and c + a > b

print(is_a_triangle(1, 1, 1))
print(is_a_triangle(1, 1, 3))

def is_a_triangle(a, b, c):
 return a + b > c and b + c > a and c + a > b

a = float(input('Enter the first side\'s length: '))
b = float(input('Enter the second side\'s length: '))
c = float(input('Enter the third side\'s length: '))

if is_a_triangle(a, b, c):
 print('Yes, it can be a triangle.')
else:
 print('No, it can\'t be a triangle.')

1
2
3
4
5
6
7
8
9
10
11
12
13
14

c2 = a2 + b2

How do we recognize which of the three sides is the hypotenuse?
The hypotenuse is the longest side.
Here is the code:

Look at how we test the relationship between the hypotenuse and the remaining sides ‒ we
choose the longest side, and apply the Pythagorean theorem to check if everything is right.
This requires three checks in total.

Evaluating a triangle's area
We can also evaluate a triangle's area. Heron's formula will be handy here:

We're going use the exponentiation operator to find the square root ‒ it may seem strange, but
it works:

This is the resulting code:

def is_a_triangle(a, b, c):
 return a + b > c and b + c > a and c + a > b

def is_a_right_triangle(a, b, c):
 if not is_a_triangle(a, b, c):
 return False
 if c > a and c > b:
 return c ** 2 == a ** 2 + b ** 2 if a > b and a > c:
 if a > b and a > c:
 return a ** 2 == b ** 2 + c ** 2
print(is_a_right_triangle(5, 3, 4))
print(is_a_right_triangle(1, 3, 4))

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

We try it with a right-angle triangle as a half of a square with one side equal to 1. This means
that its area should be equal to 0.5.
It's odd ‒ the code produces the following output:
0.49999999999999983

It's very close to 0.5, but it isn't exactly 0.5. What does it mean? Is it an error?
No, it isn't. This is the specifics of floating-point calculations. We'll tell you more about it
soon.

def is_a_triangle(a, b, c):
 return a + b > c and b + c > a and c + a > b

def heron(a, b, c):
 p = (a + b + c) / 2
 return (p * (p – a) * (p – b) * (p – c)) ** 0.5

def area_of_triangle(a, b, c):
 if not is_a_triangle(a, b, c):
 return None
 return heron(a, b, c)

print(area_of_triangle(1., 1., 2. ** .5))

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

4.5.3 Sample functions: Factorials
Another function we're about to write is factorials. Do you remember how a factorial is
defined?
0! = 1 (yes! it's true) 1! = 1 2! = 1 * 2 3! = 1 * 2 * 3 4! = 1 * 2 *
3 * 4 : : n! = 1 * 2 ** 3 * 4 * ... * n-1 * n

It's marked with an exclamation mark, and is equal to the product of all natural numbers from
one up to its argument.
Let's write our code. We'll create a function and call it factorial_function. Here is the
code:

Notice how we mirror step-by-step the mathematical definition, and how we use the for loop
to find the product.
We add a simple testing code, and these are the results we get:
1 1

2 2

3 6

4 24

5 120

def factorial_function(n):
 if n < 0:
 return None
 if n < 2:
 return 1

 product = 1
 for i in range(2, n + 1):
 product *= i
 return product

for n in range(1, 6): # testing
 print(n, factorial_function(n))

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

4.5.4 Fibonacci numbers
Are you familiar with Fibonacci numbers?
They are a sequence of integer numbers built using a very simple rule:

the first element of the sequence is equal to one (Fib1 = 1)
the second is also equal to one (Fib2 = 1)
every subsequent number is the the_sum of the two preceding numbers:(Fibi = Fibi-1 +
Fibi-2)

Here are some of the first Fibonacci numbers:
fib_1 = 1 fib_2 = 1 fib_3 = 1 + 1 = 2 fib_4 = 1 + 2 = 3 fib_5 = 2 + 3
= 5 fib_6 = 3 + 5 = 8 fib_7 = 5 + 8 = 13

What do you think about implementing this as a function?
Let's create our fib function and test it. Here it is:

Analyze the for loop body carefully, and find out how we move the elem_1 and
elem_2 variables through the subsequent Fibonacci numbers.
The test part of the code produces the following output:
1 -> 1

2 -> 1

3 -> 2

4 -> 3

5 -> 5

6 -> 8

def fib(n):
 if n < 1:
 return None
 if n < 3:
 return 1

 elem_1 = elem_2 = 1
 the_sum = 0
 for i in range(3, n + 1):
 the_sum = elem_1 + elem_2
 elem_1, elem_2 = elem_2, the_sum
 return the_sum

for n in range(1, 10): # testing
 print(n, "->", fib(n))

7 -> 13

8 -> 21

9 -> 34

1
2
3
4
5
6
7

4.5.5 Recursion
There's one more thing we want to show you to make everything complete − it's recursion.
This term may describe many different concepts, but one of them is especially interesting − the
one referring to computer programming.
In this field, recursion is a technique where a function invokes itself.
These two cases seem to be the best to illustrate the phenomenon − factorials and Fibonacci
numbers. Especially the latter.
The Fibonacci numbers definition is a clear example of recursion. We already told you
that:
Fibi = Fibi-1 + Fibi-2

The definition of the ith number refers to the i-1 number, and so on, till you reach the first two.
Can it be used in the code? Yes, it can. It can also make the code shorter and clearer.
The second version of our fib() function makes direct use of this definition:

The code is much clearer now.
But is it really safe? Does it entail any risk?
Yes, there is a little risk indeed. If you forget to consider the conditions which can stop the
chain of recursive invocations, the program may enter an infinite loop. You have to be
careful.
The factorial has a second, recursive side too. Look:
n! = 1 × 2 × 3 × ... × n-1 × n

It's obvious that:
1 × 2 × 3 × ... × n-1 = (n-1)!

So, finally, the result is:
n! = (n-1)! × n

This is in fact a ready recipe for our new solution.
Here it is:

def fib(n):
 if n < 1:
 return None
 if n < 3:
 return 1
 return fib(n – 1) + fib(n – 2)

1
2
3
4
5
6
7

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Does it work? Yes, it does. Try it for yourself.
Our short functional journey is almost over. The next section will take care of two curious
Python data types: tuples and dictionaries.

def factorial_function(n):
 if n < 0:
 return None
 if n < 2:
 return 1
 return n * factorial_function(n – 1)

def fib(n):
 if n < 1:
 return None
 if n < 3:
 return 1

 elem_1 = elem_2 = 1
 the_sum = 0
 for i in range(3, n + 1):
 the_sum = elem_1 + elem_2
 elem_1, elem_2 = elem_2, the_sum
 return the_sum

for n in range(1, 10):
 print(n, "->", fib(n))

1
2
3
4
5
6
7
8
9
10
11

4.5 SECTION SUMMARY
1. A function can call other functions, or even itself. When a function calls itself, this situation is
known as recursion, and the function which calls itself and contains a specified termination
condition (i.e. the base case − a condition which doesn't tell the function to make any further
calls to that function) is called a recursive function.
2. You can use recursive functions in Python to write clean, elegant code, and divide it into
smaller, organized chunks. On the other hand, you need to be very careful as it might
be easy to make a mistake and create a function which never terminates. You also need
to remember that recursive calls consume a lot of memory, and therefore may sometimes
be inefficient.
When using recursion, you need to take all its advantages and disadvantages into
consideration.
The factorial function is a classic example of how the concept of recursion can be put in
practice:

Recursive implementation of the factorial function.

def factorial(n):
 if n == 1: # The base case (termination condition.)
 return 1
 else:
 return n * factorial(n – 1)

print(factorial(4)) # 4 * 3 * 2 * 1 = 24

1
2
3
4
5
6

1
2
3
4
5
6
7
8
9

4.5 SECTION QUIZ
Question 1: What will happen when you attempt to run the following snippet and why?

Question 2: What is the output of the following snippet?

Check

def factorial(n):
 return n * factorial(n – 1)

print(factorial(4))

def fun(a):
 if a > 30:
 return 3
 else:
 return a + fun(a + 3)

print(fun(25))

SECTION 4.6 – TUPLES AND DICTIONARIES
In this section, you will learn about sequence types and the concept of mutability. You will learn
what tuples and dictionaries are, and how you can use them to store and process data values.
Let's go!v

1
2

4.6.1 Sequence types and mutability
Before we start talking about tuples and dictionaries, we have to introduce two important
concepts: sequence types and mutability.
A sequence type is a type of data in Python which is able to store more than one value
(or less than one, as a sequence may be empty), and these values can be sequentially
(hence the name) browsed, element by element.
As the for loop is a tool especially designed to iterate through sequences, we can express the
definition as: a sequence is data which can be scanned by the for loop.
You've encountered one Python sequence so far − the list. The list is a classic example of a
Python sequence, although there are some other sequences worth mentioning, and we're
going to present them to you now.
The second notion − mutability − is a property of any Python data that describes its readiness
to be freely changed during program execution. There are two kinds of Python
data: mutable and immutable.
Mutable data can be freely updated at any time − we call such an operation in situ.
Mutable data can be freely updated at any time − we call such an operation in situ.
In situ is a Latin phrase that translates as literally in position. For example, the following
instruction modifies the data in situ:

Immutable data cannot be modified in this way.
Imagine that a list can only be assigned and read over. You would be able neither to append
an element to it, nor remove any element from it. This means that appending an element to the
end of the list would require the recreation of the list from scratch.
You would have to build a completely new list, consisting of the all elements of the already
existing list, plus the new element.
The data type we want to tell you about now is a tuple. A tuple is an immutable sequence
type. It can behave like a list, but it can't be modified in situ.

list.append(1)

1
2
3

1
2
3
4
5
6

1
2

4.6.2 Tuples
The first and the clearest distinction between lists and tuples is the syntax used to create them
– tuples prefer to use parenthesis, whereas lists like to see brackets, although it's
also possible to create a tuple just from a set of values separated by commas.
Look at the example:

 ">There are two tuples, both containing four

elements.

Let's print them:<

This is what you should see in the console:
(1, 2, 4, 8)

(1.0, 0.5, 0.25, 0.125)

Note: each tuple element may be of a different type (floating-point, integer, or any other not-
as-yet-introduced kind of data).

How to create a tuple
It is possible to create an empty tuple – parentheses are required then:

If you want to create a one-element tuple, you have to take into consideration the fact that,
due to syntax reasons (a tuple has to be distinguishable from an ordinary, single value), you
must end the value with a comma:
one_element_tuple_1 = (1,)

one_element_tuple_2 = 1.,

Removing the commas won't spoil the program in any syntactical sense, but you will instead
get two single variables, not tuples.

How to use a tuple

tuple_1 = (1, 2, 4, 8)
tuple_2 = 1., .5, .25, .125

tuple_1 = (1, 2, 4, 8)
tuple_2 = 1., .5, .25, .125

print(tuple_1)
print(tuple_2)

empty_tuple = ()

1
2
3
4
5
6
7
8
9
10

1
2
3
4
5
6

If you want to get the elements of a tuple in order to read them over, you can use the same
conventions to which you're accustomed while using lists.
Take a look at the following code.

The program should produce the following output − run it and check:
1

1000

(10, 100, 1000)

(1, 10)

1

10

100

1000

The similarities may be misleading − don't try to modify a tuple's contents! It's not a list!
All of these instructions (except the topmost one) will cause a runtime error:

This is the message that Python will give you in the console window:
AttributeError: 'tuple' object has no attribute 'append'

What else can tuples do for you?

the len() function accepts tuples, and returns the number of elements contained
inside;
the + operator can join tuples together (we've shown you this already)
the * operator can multiply tuples, just like lists;

my_tuple = (1, 10, 100, 1000)

print(my_tuple[0])
print(my_tuple[-1])
print(my_tuple[1:])
print(my_tuple[:-2])

for elem in my_tuple:
 print(elem)

my_tuple = (1, 10, 100, 1000)

my_tuple.append(10000)
del my_tuple[0]
my_tuple[1] = -10

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9
10

the in and not in operators work in the same way as in lists.

The following snippet presents them all.

The output should look as follows:
9

(1, 10, 100, 1000, 10000)

(1, 10, 100, 1, 10, 100, 1, 10, 100)

True

True

One of the most useful tuple properties is their ability to appear on the left side of the
assignment operator. You saw this phenomenon some time ago, when it was necessary to
find an elegant tool to swap two variables' values.
Take a look at the following snippet:

It shows three tuples interacting − in effect, the values stored in them "circulate"
− t1 becomes t2, t2 becomes t3, and t3 becomes t1.
Note: the example presents one more important fact: a tuple's elements can be variables,
not only literals. Moreover, they can be expressions if they're on the right side of the
assignment operator.

my_tuple = (1, 10, 100)
t1 = my_tuple + (1000, 10000)
t2 = my_tuple * 3
print(len(t2))
print(t1)
print(t2)
print(10 in my_tuple)
print(-10 not in my_tuple)

var = 123

t1 = (1,)
t2 = (2,)
t3 = (3, var)

t1, t2, t3 = t2, t3, t1

print(t1, t2, t3)

1
2
3
4
5
6
7
8

4.6.3 Dictionaries
The dictionary is another Python data structure. It's not a sequence type (but can be easily
adapted to sequence processing) and it is mutable.
To explain what the Python dictionary actually is, it is important to understand that it is literally a
dictionary.

How to make a dictionary
If you want to assign some initial pairs to a dictionary, you should use the following syntax:

In the first example, the dictionary uses keys and values which are both strings. In the second
one, the keys are strings, but the values are integers. The reverse layout (keys → numbers,
values → strings) is also possible, as well as number-number combinations.
The list of pairs is surrounded by curly braces, while the pairs themselves are separated by
commas, and the keys and values by colons.
The first of our dictionaries is a very simple English-French dictionary. The second − a very tiny
telephone directory.
The empty dictionary is constructed by an empty pair of curly braces − nothing unusual.
The Python dictionary works in the same way as a bilingual dictionary. For example, you
have an English word (e.g. cat) and need its French equivalent. You browse the dictionary in
order to find the word (you may use different techniques to do that − it doesn't matter) and
eventually you get it. Next, you check the French counterpart and it is (most probably) the word
"chat".
In Python's world, the word you look for is named a key. The word you get from the dictionary
is called a value.
This means that a dictionary is a set of key-value pairs. Note:

dictionary = {"cat": "chat", "dog": "chien", "horse": "cheval"}
phone_numbers = {'boss': 5551234567, 'Suzy': 22657854310}
empty_dictionary = {}

print(dictionary)
print(phone_numbers)
print(empty_dictionary)

1
2
3
4
5
6
7

1
2
3

each key must be unique − it's not possible to have more than one key of the same
value;
a key may be any immutable type of object: it can be a number (integer or float), or
even a string, but not a list;
a dictionary is not a list − a list contains a set of numbered values, while a dictionary
holds pairs of values;
the len() function works for dictionaries, too − it returns the number of key-value
elements in the dictionary;
a dictionary is a one-way tool − if you have an English-French dictionary, you can look
for French equivalents of English terms, but not vice versa.

Now we can show you some working examples.
The dictionary as a whole can be printed with a single print() invocation. The
snippet may produce the following output:
{'dog': 'chien', 'horse': 'cheval', 'cat': 'chat'}

{'Suzy': 5557654321, 'boss': 5551234567}

{}

Have you noticed anything surprising? The order of the printed pairs is different than in the
initial assignment. What does that mean?
First of all, it's a confirmation that dictionaries are not lists – they don't preserve the order of
their data, as the order is completely meaningless (unlike in real, paper dictionaries). The order
in which a dictionary stores its data is completely out of your control, and your
expectations. That's normal.
NOTE
In Python 3.6x dictionaries have become ordered collections by default. Your results may vary
depending on what Python version you're using.

How to use a dictionary
Analyze the following code:

If you want to get any of the values, you have to deliver a valid key value:

dictionary = {"cat": "chat", "dog": "chien", "horse": "cheval"}
phone_numbers = {'boss' : 5551234567, 'Suzy' : 22657854310}
empty_dictionary = {}

Print the values here.

print(dictionary['cat'])
print(phone_numbers['Suzy'])

1
2
3
4
5
6
7
8
9

Getting a dictionary's value resembles indexing, especially thanks to the brackets surrounding
the key's value.
Note:

if the key is a string, you have to specify it as a string;
keys are case-sensitive: 'Suzy' is something different from 'suzy'.

The snippet outputs two lines of text:
chat

5557654321

And now the most important news: you mustn't use a non-existent key. Trying something
like this:
print(phone_numbers['president'])

will cause a runtime error. Try to do it.
Fortunately, there's a simple way to avoid such a situation. The in operator, together with its
companion, not in, can salvage this situation.
The following code safely searches for some French words:

The code's output looks as follows:
cat -> chat

lion is not in dictionary

horse -> cheval

NOTE
When you write a big or lengthy expression, it may be a good idea to keep it vertically aligned.
This is how you can make your code more readable and more programmer-friendly, e.g.:

dictionary = {"cat": "chat", "dog": "chien", "horse": "cheval"}
words = ['cat', 'lion', 'horse']

for word in words:
 if word in dictionary:
 print(word, "->", dictionary[word])
 else:
 print(word, "is not in dictionary")

1
2
3
4
5
6
7
8
9
10
11

This kind of formatting is called a hanging indent.

Example 1:
dictionary = {
 "cat": "chat",
 "dog": "chien",
 "horse": "cheval"
}
Example 2:
phone_numbers = {'boss': 5551234567,
 'Suzy': 22657854310
}

1
2
3
4
5

1
2
3
4
5

4.6.4 Dictionary methods and functions

The keys() method
Can dictionaries be browsed using the for loop, like lists or tuples?
No and yes.
No, because a dictionary is not a sequence type − the for loop is useless with it.
Yes, because there are simple and very effective tools that can adapt any dictionary to the
for loop requirements (in other words, building an intermediate link between the dictionary
and a temporary sequence entity).
The first of them is a method named keys(), possessed by each dictionary. The
method returns an iterable object consisting of all the keys gathered within the
dictionary. Having a group of keys enables you to access the whole dictionary in an easy and
handy way.
Just like here:

Let's now have a look at a dictionary method called items(). The method returns
tuples (this is the first example where tuples are something more than just an example of
themselves) where each tuple is a key-value pair.
This is how it works:

Note the way in which the tuple has been used as a for loop variable.

Modifying and adding values
Assigning a new value to an existing key is simple − as dictionaries are fully mutable, there
are no obstacles to modifying them.
We're going to replace the value "chat" with "minou", which is not very accurate, but it will
work well with our example.
Look:

dictionary = {"cat": "chat", "dog": "chien", "horse": "cheval"}

for key in dictionary.keys():
 print(key, "->", dictionary[key]

dictionary = {"cat": "chat", "dog": "chien", "horse": "cheval"}

for english, french in dictionary.items():
 print(english, "->", french)

1
2
3
4
5

1
2

1
2
3
4
5

The code's output looks as follows:
horse -> cheval

dog -> chien

cat -> chat

The example prints:
cat -> chat

dog -> chien

horse -> cheval

The output is:
{'cat': 'minou', 'dog': 'chien', 'horse': 'cheval'}

Do you want it sorted? Just enrich the for loop to get such a form:

The sorted() function will do its best — the output will look like this:
cat -> chat
dog -> chien
horse -> cheval

How to use a dictionary: the items() and values() methods
Another way is based on using a dictionary's method named items(). The method returns
tuples (this is the first example where tuples are something more than just an example of
themselves) where each tuple is a key-value pair.
This is how it works:

Note the way in which the tuple has been used as a for loop variable.
The example prints:
cat -> chat

dictionary = {"cat": "chat", "dog": "chien", "horse": "cheval"}

dictionary['cat'] = 'minou'
print(dictionary)

for key in sorted(dictionary.keys()):

dictionary = {"cat": "chat", "dog": "chien", "horse": "cheval"}

for english, french in dictionary.items():
 print(english, "->", french)

1
2
3
4
5

1
2
3
4
5

dog -> chien
horse -> cheval

There is also a method called values(), which works similarly to keys(), but returns
values.
Here is a simple example:

As the dictionary is not able to automatically find a key for a given value, the role of this
method is rather limited.
Here is the expected output:
cheval
chien
chat

How to use a dictionary: modifying and adding values
Assigning a new value to an existing key is simple — as dictionaries are fully mutable, there
are no obstacles to modifying them.
We're going to replace the value "chat" with "minou" , which is not very accurate, but will
work well with our example.
Look:

The output is:
{'cat': 'minou', 'dog': 'chien', 'horse': 'cheval'}

Adding a new key
Adding a new key-value pair to a dictionary is as simple as changing a value – you only have
to assign a value to a new, previously non-existent key.
Note: this is very different behavior compared to lists, which don't allow you to assign values to
non-existing indices.
Let's add a new pair of words to the dictionary − a bit weird, but still valid:

dictionary = {"cat": "chat", "dog": "chien", "horse": "cheval"}

for french in dictionary.values():
 print(french)

dictionary = {"cat": "chat", "dog": "chien", "horse": "cheval"}

dictionary['cat'] = 'minou'
print(dictionary)

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

The example outputs:
{'cat': 'chat', 'dog': 'chien', 'horse': 'cheval', 'swan': 'cygne'}

NOTE
You can also insert an item to a dictionary by using the update() method, e.g.:

Removing a key
Can you guess how to remove a key from a dictionary?
Note: removing a key will always cause the removal of the associated value. Values cannot
exist without their keys.
This is done with the del instruction.
Here's the example:

Note: removing a non-existing key causes an error.
The example outputs:
{'cat': 'chat', 'horse': 'cheval'}

EXTRA
To remove the last item in a dictionary, you can use the popitem() method:

dictionary = {"cat": "chat", "dog": "chien", "horse": "cheval"}

dictionary['swan'] = 'cygne'
print(dictionary)

dictionary = {"cat": "chat", "dog": "chien", "horse": "cheval"}

dictionary.update({"duck": "canard"})
print(dictionary)

dictionary = {"cat": "chat", "dog": "chien", "horse": "cheval"}

del dictionary['dog']
print(dictionary)

dictionary = {"cat": "chat", "dog": "chien", "horse": "cheval"}

dictionary.popitem()
print(dictionary) # outputs: {'cat': 'chat', 'dog': 'chien'}

In the older versions of Python, i.e. before 3.6.7, the popitem() method removes a random
item from a dictionary.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

4.6.5 Tuples and dictionaries can work together
We've prepared a simple example, showing how tuples and dictionaries can work together.
Let's imagine the following problem:

you need a program to evaluate the students' average scores;
the program should ask for the student's name, followed by her/his single score;
the names may be entered in any order;
entering an empty name finishes the inputting of the data (note 1: entering an empty
score will raise the ValueError exception, but don't worry about that now, you'll see how
to handle such cases when we talk about exceptions in the second part of the Python
Essentials course series)
a list of all names, together with the evaluated average score, should be then emitted.

Look at the following code. This how to do it.

Now, let's analyze it line by line:

line 1: create an empty dictionary for the input data; the student's name is used as a
key, while all the associated scores are stored in a tuple (the tuple may be a dictionary
value – that's not a problem at all)
line 3: enter an "infinite" loop (don't worry, it'll break at the right moment)

school_class = {}

while True:
 name = input("Enter the student's name: ")
 if name == '':
 break

 score = int(input("Enter the student's score (0-10): "))
 if score not in range(0, 11):
 break

 if name in school_class:
 school_class[name] += (score,)
 else:
 school_class[name] = (score,)

for name in sorted(school_class.keys()):
 adding = 0
 counter = 0
 for score in school_class[name]:
 adding += score
 counter += 1
 print(name, ":", adding / counter)

line 4: read the student's name here;
line 5-6: if the name is an empty string (), leave the loop;
line 8: ask for one of the student's scores (an integer from the range 0-10)
line 9-10: if the score entered is not within the range from 0 to 10, leave the loop;
line 12-13: if the student's name is already in the dictionary, lengthen the associated
tuple with the new score (note the += operator)
line 14-15: if this is a new student (unknown to the dictionary), create a new entry – its
value is a one-element tuple containing the entered score;
line 17: iterate through the sorted students' names;
line 18-19: initialize the data needed to evaluate the average (sum and counter)
line 20-22: we iterate through the tuple, taking all the subsequent scores and updating
the sum, together with the counter;
line 23: evaluate and print the student's name and average score.

This is a record of the conversation we had with our program:
Enter the student's name: Bob

Enter the student's score (0-10): 7

Enter the student's name: Andy

Enter the student's score (0-10): 3

Enter the student's name: Bob

Enter the student's score (0-10): 2

Enter the student's name: Andy

Enter the student's score (0-10): 10

Enter the student's name: Andy

Enter the student's score (0-10): 3

Enter the student's name: Bob

Enter the student's score (0-10): 9

Enter the student's name:

Andy : 5.333333333333333

Bob : 6.0

1
2
3
4
5
6

1
2
3

1
2
3

1
2
3
4
5
6

1
2
3

4.6 SECTION SUMMARY

Key takeaways: tuples
1. Tuples are ordered and unchangeable (immutable) collections of data. They can be thought
of as immutable lists. They are written in round brackets:

Each tuple element may be of a different type (i.e. integers, strings, booleans, etc.). What is
more, tuples can contain other tuples or lists (and the other way round).
2. You can create an empty tuple like this:

3. A one-element tuple may be created as follows:

If you remove the comma, you will tell Python to create a variable, not a tuple:

4. You can access tuple elements by indexing them:

5. Tuples are immutable, which means you cannot change their elements (you cannot append
tuples, or modify, or remove tuple elements). The following snippet will cause an exception:

my_tuple = (1, 2, True, "a string", (3, 4), [5, 6], None)
print(my_tuple)

my_list = [1, 2, True, "a string", (3, 4), [5, 6], None]
print(my_list)

empty_tuple = ()
print(type(empty_tuple)) # outputs: <class 'tuple'=""></class>

one_elem_tuple_1 = ("one",) # Brackets and a comma.
one_elem_tuple_2 = "one", # No brackets, just a comma.

my_tuple_1 = 1,
print(type(my_tuple_1)) # outputs: <class 'tuple'=""></class>

my_tuple_2 = 1 # This is not a tuple.
print(type(my_tuple_2)) # outputs: <class 'int'=""></class>

my_tuple = (1, 2.0, "string", [3, 4], (5,), True)
print(my_tuple[3]) # outputs: [3, 4]

1
2
3

1
2
3
4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

However, you can delete a tuple as a whole:

6. You can loop through a tuple elements (Example 1), check if a specific element is
(not)present in a tuple (Example 2), use the len() function to check how many elements there
are in a tuple (Example 3), or even join/multiply tuples (Example 4):

EXTRA
You can also create a tuple using a Python built-in function called tuple(). This is particularly
useful when you want to convert a certain iterable (e.g. a list, range, string, etc.) to a tuple:

my_tuple = (1, 2.0, "string", [3, 4], (5,), True)
my_tuple[2] = "guitar" # The TypeError exception will be raised.

my_tuple = 1, 2, 3,
del my_tuple
print(my_tuple) # NameError: name 'my_tuple' is not defined

Example 1
tuple_1 = (1, 2, 3)
for elem in tuple_1:
 print(elem)

Example 2
tuple_2 = (1, 2, 3, 4)
print(5 in tuple_2)
print(5 not in tuple_2)

Example 3
tuple_2 = (1, 2, 3, 4)
print(len(tuple_3))
print(5 not in tuple_2)
Example 4
tuple_4 = tuple_1 + tuple_2
tuple_5 = tuple_3 * 2

print(tuple_4)
print(tuple_5)

1
2
3
4
5
6
7
8
9
10

1
2
3
4

1
2
3
4
5
6

By the same fashion, when you want to convert an iterable to a list, you can use a Python built-
in function called list():

Key takeaways: dictionaries
1. Dictionaries are unordered*, changeable (mutable), and indexed collections of data. (*Since
Python 3.6x dictionaries have become ordered by default.)
Each dictionary is a set of key: value pairs. You can create it by using the following syntax:

2. If you want to access a dictionary item, you can do so by making a reference to its key
inside a pair of square brackets (ex. 1) or by using the get() method (ex. 2):

my_tuple = tuple((1, 2, "string"))
print(my_tuple)

my_list = [2, 4, 6]
print(my_list) # outputs: [2, 4, 6]
print(type(my_list)) # outputs: <class 'list'=""></class>
tup = tuple(my_list)
print(tup) # outputs: (2, 4, 6)
print(type(tup)) # outputs: <class 'tuple'=""></class>

tup = 1, 2, 3,
my_list = list(tup)
print(type(my_list)) # outputs: <class 'list'=""></class>

my_dictionary = {
 key1: value1,
 key2: value2,
 key3: value3,
}

1
2
3
4
5
6
7
8
9
10
11
12

1
2
3
4
5
6
7
8
9
10

1
2
3
4
5
6
7
8

3. If you want to change the value associated with a specific key, you can do so by referring to
the item's key name in the following way:

4. To add or remove a key (and the associated value), use the following syntax:

You can also insert an item into a dictionary by using the update() method, and remove the
last element by using the popitem() method, e.g.:

pol_eng_dictionary = {
 "kwiat": "flower",
 "woda": "water",
 "gleba": "soil"
 }

item_1 = pol_eng_dictionary["gleba"] # ex. 1
print(item_1) # outputs: soil

item_2 = pol_eng_dictionary.get("woda") # ex. 2
print(item_2) # outputs: water

pol_eng_dictionary = {
 "zamek": "castle",
 "woda": "water",
 "gleba": "soil"
 }

pol_eng_dictionary["zamek"] = "lock"
item = pol_eng_dictionary["zamek"]
print(item) # outputs: lock

phonebook = {} # an empty dictionary

phonebook["Adam"] = 3456783958 # create/add a key-value pair
print(phonebook) # outputs: {'Adam': 3456783958}

del phonebook["Adam"]
print(phonebook) # outputs: {}

1
2
3
4

5
6
7
8

1
2
3
4
5
6
7
8
9
10
11
12

1
2
3
4
5
6
7
8
9

5. You can use the for loop to loop through a dictionary, e.g.:

6. If you want to loop through a dictionary's keys and values, you can use
the items() method, e.g.:

7. To check if a given key exists in a dictionary, you can use the in keyword:

pol_eng_dictionary = {"kwiat": "flower"}

pol_eng_dictionary.update({"gleba": "soil"})
print(pol_eng_dictionary) # outputs: {'kwiat': 'flower', 'gleba':
'soil'}

pol_eng_dictionary.popitem()
print(pol_eng_dictionary) # outputs: {'kwiat': 'flower'}

pol_eng_dictionary = {
 "zamek": "castle",
 "woda": "water",
 "gleba": "soil"
 }

for item in pol_eng_dictionary:
 print(item)

woda
gleba

pol_eng_dictionary = {
 "zamek": "castle",
 "woda": "water",
 "gleba": "soil"
 }

for key, value in pol_eng_dictionary.items():
 print("Pol/Eng ->", key, ":", value)

1
2
3
4
5
6
7
8
9
10
11

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1
2
3
4
5
6
7
8

8. You can use the del keyword to remove a specific item, or delete a dictionary. To remove all
the dictionary's items, you need to use the clear() method:

9. To copy a dictionary, use the copy() method:

pol_eng_dictionary = {
 "zamek": "castle",
 "woda": "water",
 "gleba": "soil"
 }

if "zamek" in pol_eng_dictionary:
 print("Yes")
else:
 print("No")

pol_eng_dictionary = {
 "zamek": "castle",
 "woda": "water",
 "gleba": "soil"
 }

print(len(pol_eng_dictionary)) # outputs: 3
del pol_eng_dictionary["zamek"] # remove an item
print(len(pol_eng_dictionary)) # outputs: 2

pol_eng_dictionary.clear() # removes all the items
print(len(pol_eng_dictionary)) # outputs: 0

del pol_eng_dictionary # removes the dictionary

pol_eng_dictionary = {
 "zamek": "castle",
 "woda": "water",
 "gleba": "soil"
 }

copy_dictionary = pol_eng_dictionary.copy()

1
2
3

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5
6
7
8
9

1
2
3
4
5

4.6 SECTION QUIZ
Question 1: What happens when you attempt to run the following snippet?

Question 2: What is the output of the following snippet?

Question 3: Complete the code to correctly use the count() method to find the number of
duplicates of 2 in the following tuple.

Question 4: Write a program that will "glue" the two dictionaries (d1 and d2) together and
create a new one (d3).

Question 5: Write a program that will convert the my_list list to a tuple.

Question 6: Write a program that will convert the colors tuple to a dictionary.

my_tup = (1, 2, 3)
print(my_tup[2])

tup = 1, 2, 3
a, b, c = tup

print(a * b * c)

tup = 1, 2, 3, 2, 4, 5, 6, 2, 7, 2, 8, 9
duplicates = # Write your code here.

print(duplicates) # outputs: 4

d1 = {'Adam Smith': 'A', 'Judy Paxton': 'B+'}
d2 = {'Mary Louis': 'A', 'Patrick White': 'C'}
d3 = {}

for item in (d1, d2):
 # Write your code here.

print(d3)

my_list = ["car", "Ford", "flower", "Tulip"]

t = # Write your code here.
print(t)

1
2
3
4
5
6

1
2
3
4
5
6

1
2
3
4
5
6
7
8
9
10

Question 7: What will happen when you run the following code?

Question 8: What is the output of the following program?

Check

colors = (("green", "#008000"), ("blue", "#0000FF"))

Write your code here.

print(colors_dictionary)

my_dictionary = {"A": 1, "B": 2}
copy_my_dictionary = my_dictionary.copy()
my_dictionary.clear()

print(copy_my_dictionary)

colors = {
 "white": (255, 255, 255),
 "grey": (128, 128, 128),
 "red": (255, 0, 0),
 "green": (0, 128, 0)
 }

for col, rgb in colors.items():
 print(col, ":", rgb)

SECTION 4.7 – EXCEPTIONS
Welcome to the last section in the course, where you will learn about the exception handling
mechanism in Python. You will explore the topics of errors in code, and learn what you can do
to prevent program termination. You will also cover the subject of code testing and debugging,
and learn some tips about how to make your code writing process better and less error-prone.
Let's begin!

4.7.1 Errors – the developer's daily bread
It seems indisputable that all programmers (including you) want to write error-free code and do
their best to achieve this goal. Unfortunately, nothing is perfect in this world and software is no
exception. Pay attention to the word exception as we'll see it again very soon in a meaning
that has nothing in common with the absolute.
To err is human. It's impossible to make no mistakes, and it's impossible to write error-free
code. Don't get us wrong – we don't want to convince you that writing messy and faulty
programs is a virtue. We rather want to explain that even the most careful programmer is not
able to avoid minor or major defects. It's only those who do nothing that make no mistakes.

Paradoxically, accepting this difficult truth can make you a better programmer and may
improve your code quality.
"How could this be possible?", you may ask.
We'll try to show you.

Errors in data vs. errors in code
Dealing with programming errors has (at least) two sides. The one appears when you get into
trouble because your – apparently correct – code is fed with bad data. For example, you
expect the code will input an integer value, but your careless user enters some random letters
instead.
It may happen that your code will be terminated then, and the user will be left alone with a
terse and ambiguous error message on the screen. The user will be unsatisfied, and you
should be unsatisfied, too.
We're going to show you how to protect your code from this kind of failure and how not to
provoke the user's anger.
The other side of dealing with programming errors reveals itself when undesirable code
behavior is caused by mistakes you made when you were writing your program. This kind of
error is commonly called a "bug", which is a manifestation of a well-established belief that if a
program works badly, it must be caused by malicious bugs which live inside the computer
hardware and cause short circuits or other interference.
This idea is not as mad as it may look – such incidents were common in times when computers
occupied large halls, consumed kilowatts of electricity, and produced enormous amounts of
heat. Fortunately or not, these times are gone forever and the only bugs which can spoil your
code are those you sowed in the code yourself. Therefore, we will try to show you how to find
and eliminate your bugs, in other words, how to debug your code.

Let's start the journey through the land of errors and bugs.

1
2
3

1
2

4.7.2 When data is not what it should be
Let's write a piece of extremely trivial code – it will read a natural number (a non-negative
integer) and print its reciprocal. In this way, 2 will turn into 0.5 (1/2) and 4 into 0.25 (1/4).
Here's the program:

Is there anything that can go wrong with it? The code is so brief and so compact that it doesn't
seem like we'll find any trouble there.
It seems that you already know where we are going. Yes, you're right – entering data that is not
an integer (which also includes entering nothing at all) will completely ruin the program
execution. This is what the code's user will see:
Traceback (most recent call last):

 File "code.py", line 1, in <module></module>

 value = int(input('Enter a natural number: '))

ValueError: invalid literal for int() with base 10: ''

All the lines Python shows you are meaningful and important, but the last line seems to be the
most valuable. The first word in the line is the name of the exception which causes your code
to stop. It's ValueError here. The rest of the line is just a brief explanation which more
precisely specifies the cause of the occurred exception.
How do you deal with it? How do you protect your code from termination, the user from
disappointment, and yourself from the user's dissatisfaction?
The very first thought that can come to your mind is to check if the data provided by the user is
valid and to refuse to cooperate if the data is incorrect. In this case, the check can rely on the
fact that we expect the input string to contain digits only.
You should already be able to implement this check and write it yourself, shouldn't you? It is
also possible to check if the value variable's type is an int (Python has a special means for
these kinds of checks – it's an operator named is. The check itself may look like this:

and evaluates to true if the current value variable's type is int.
Please forgive us if we don't spend any more time on it now – you will find more detailed
explanations of the is operator in a course module devoted to Object-Oriented Programming.
You may be surprised to learn that we don't want you to do any preliminary data validation.
Why? Because this is not the way Python recommends. Really.

value = int(input('Enter a natural number: '))
print('The reciprocal of', value, 'is', 1/value)

type(value) is int

1
2
3
4
5
6
7
8

4.7.3 The try-except branch
In the Python world, there is a rule that says: "It's better to beg for forgiveness than to ask for
permission".
Let's stop here for a moment. Don't get us wrong – we don't want you to apply the rule in your
everyday life. Don't take anyone's car without permission in the hope that you can be so
convincing that you will avoid conviction. The rule is about something else.
Actually, the rule reads: "it's better to handle an error when it happens than to try to avoid it".
"Okay," you may say now, 'but how should I beg for forgiveness when the program is
terminated and there is nothing left that can be done?" This is where the exception comes on
the scene.
Look at the following code:

You can see two branches here:

first, starting with the try keyword – this is the place where you put the code you
suspect is risky and may be terminated in case of error; note: this kind of error is called
an exception, while the exception occurrence is called raising – we can say that an
exception is (or was) raised;
second, the part of the code starting with the except keyword is designed to handle the
exception; it's up to you what you want to do here: you can clean up the mess or you
can just sweep the problem under the carpet (although we would prefer the first
solution).

So, we could say that these two blocks work like this:

the try keyword marks the place where you try to do something without permission;
the except keyword starts a location where you can show off your apology talents.

As you can see, this approach accepts errors (treats them as a normal part of the program's
life) instead of escalating efforts to avoid errors at all.

try:
 # It's a place where
 # you can do something
 # without asking for permission.
except:
 # It's a spot dedicated to
 # solemnly begging for forgiveness.

1
2
3
4
5
6

4.7.4 The exception proves the rule
Let's rewrite the code to adopt the Python approach to life:

Let us summarize what we talked about:

any part of the code placed between try and except is executed in a very special way
– any error which occurs here won't terminate program execution. Instead, the control
will immediately jump to the first line situated after the except keyword, and no other
part of the try branch is executed;
the code in the except branch is activated only when an exception has been
encountered inside the try block. There is no way to get there by any other means;
when either the try block or the except block is executed successfully, the control
returns to the normal path of execution, and any code located beyond in the source file
is executed as if nothing happened.

Now we want to ask you an innocent question: is ValueError the only way the control could
fall into the except branch?
Analyze the code carefully and think over your answer!

try:
 value = int(input('Enter a natural number: '))
 print('The reciprocal of', value, 'is', 1/value)
except:
 print('I do not know what to do.')

1
2
3
4
5
6
7
8

4.7.5 How to deal with more than one exception
The answer is obviously "no" – there is more than one possible way to raise an exception. For
example, a user may enter zero as an input – can you predict what will happen next?
Yes, you're right – the division placed inside the print() function invocation will raise
the ZeroDivisionError. As you may expect, the code's behavior will be the same as in the
previous case – the user will see the "I do not know what to do..." message, which seems to be
quite reasonable in this context, but it's also possible that you would want to handle this kind of
problem in a bit different way.
Is it possible? Of course, it is. There are at least two approaches you can implement here.
The first of them is simple and complicated at the same time: you can just add two separate try
blocks, one including the input() function invocation where the ValueError may be raised,
and the second devoted to handling possible issues induced by the division. Both these try
blocks would have their own except branches, and in effect you will gain full control over two
different errors.
This solution is good, but it is a bit lengthy – the code becomes unnecessarily bloated.
Moreover, it's not the only danger that awaits you. Note that leaving the first try-
except block leaves a lot of uncertainty – you will have to add extra code to ensure that the
value the user has entered is safe to use in division. This is how a seemingly simple solution
becomes overly complicated.
Fortunately, Python offers a simpler way to deal with this kind of challenge.

Two exceptions after one try
Look at the following code. As you can see, we've just introduced the second except branch.
This is not the only difference – note that both branches have exception names specified. In
this variant, each of the expected exceptions has its own way of handling the error, but it must
be emphasized that only one of all branches can intercept the control – if one of the
branches is executed, all the other branches remain idle.

Additionally, the number of except branches is not limited – you can specify as many or as
few of them as you need, but don't forget that none of the exceptions can be specified more
than once.
But this still isn't the last Python word on exceptions. Stay tuned.

try:
 value = int(input('Enter a natural number: '))
 print('The reciprocal of', value, 'is', 1/value)
except ValueError:
 print('I do not know what to do.')
except ZeroDivisionError:
 print('Division by zero is not allowed in our Universe.')

1
2
3
4
5
6
7
8
9
10

4.7.6 The default exception and how to use it
The code has changed again – can you see the difference?

We've added a third except branch, but this time it has no exception name specified – we
can say it's anonymous or (what is closer to its actual role) it's the default. You can expect
that when an exception is raised and there is no except branch dedicated to this exception, it
will be handled by the default branch.
NOTE
The default except branch must be the last except branch. Always!

try:
 value = int(input('Enter a natural number: '))
 print('The reciprocal of', value, 'is', 1/value)
except ValueError:
 print('I do not know what to do.')
except ZeroDivisionError:
 print('Division by zero is not allowed in our Universe.')
except:
 print('Something strange has happened here... Sorry!')

1
2
3

1
2
3
4

4.7.7 Some useful exceptions
Let's discuss in more detail some useful (or rather, the most common) exceptions you may
experience.

ZeroDivisionError
This appears when you try to force Python to perform any operation which provokes division in
which the divider is zero, or is indistinguishable from zero. Note that there is more than one
Python operator which may cause this exception to raise. Can you guess them all?
Yes, they are: /, //, and %.

ValueError
Expect this exception when you're dealing with values which may be inappropriately used in
some context. In general, this exception is raised when a function (like int() or float())
receives an argument of a proper type, but its value is unacceptable.

TypeError
This exception shows up when you try to apply a data whose type cannot be accepted in the
current context. Look at the example:

You're not allowed to use a float value as a list index (the same rule applies to tuples,
too). TypeError is an adequate name to describe the problem, and an adequate exception to
raise.

AttributeError
This exception arrives – among other occasions – when you try to activate a method which
doesn't exist in an item you're dealing with. For example:

The third line of our example attempts to make use of a method which isn't contained in the
lists. This is the place where AttributeError is raised.

SyntaxError
This exception is raised when the control reaches a line of code which violates Python's
grammar. It may sound strange, but some errors of this kind cannot be identified without first
running the code. This kind of behavior is typical of interpreted languages – the interpreter
always works in a hurry and has no time to scan the whole source code. It is content with
checking the code which is currently being run. An example of such a category of issues will be
presented very soon.

short_list = [1]
one_value = short_list[0.5]

short_list = [1]
short_list.append(2)
short_list.depend(3)

It's a bad idea to handle this exception in your programs. You should produce code that is free
of syntax errors, instead of masking the faults you've caused.

1
2
3
4
5
6
7
8
9

4.7.8 Why you can't avoid testing your code
Although we're going to wrap up our exceptional considerations here, don't think it's all Python
can offer to help you with begging for forgiveness. Python's exception machinery is far more
complex, and its capabilities allow you to build expanded error handling strategies. We'll return
to these issues – we promise. Feel free to conduct your experiments and to dive into
exceptions yourself.
Now we want to tell you about the second side of the never-ending struggle with errors – the
inevitable destiny of a developer's life. As you are not able to avoid making bugs in your code,
you must always be ready to seek out and destroy them. Don't bury your head in the sand –
ignoring errors won't make them disappear.
An important duty for developers is to test the newly created code, but you must not forget that
testing isn't a way to prove that the code is error-free. Paradoxically, the only proof testing can
provide is that your code contains errors. Don't think you can relax after a successful test.
The second important aspect of software testing is strictly psychological. It's a truth known for
years that authors – even those who are reliable and self-aware – aren't able to objectively
evaluate and verify their works.
This is why each novelist needs an editor and each programmer needs a tester. Some say – a
little spitefully but truthfully – that developers test the code to show their perfection, not to find
problems that may frustrate them. Testers are free of such dilemmas, and this is why their work
is more effective and profitable.
Of course, this doesn't absolve you from being attentive and careful. Test your code as best
you can. Don't make the testers' work too easy.
Your primary duty is to ensure that you've checked all execution paths your code can go
through. Does that sound mysterious? Nothing of the kind!

Tracing the execution paths
Now look at the following code. Suppose you've just finished writing it.

There are three independent execution paths in the code – can you see them? They are
determined by the if-elif-else statements. Of course, the execution paths can be built by
many other statements, like loops, or even try-except blocks.
If you're going to test your code fairly and you want to sleep soundly and to dream without
nightmares (nightmares about bugs can be devastating for a developer's performance) you are
obliged to prepare a test data set that will force your code to negotiate all possible paths.

temperature = float(input('Enter current temperature:'))

if temperature > 0:
 print("Above zero")
elif temperature < 0:
 print("Below zero")
else:
 print("Zero")

In our example, the set should contain at least three float values: one positive, one negative,
and zero.

1
2
3
4
5
6
7
8
9

4.7.9 When Python closes its eyes
Such a test is crucial. We want to show you why you mustn't skip it. Look at the following code.

We intentionally introduced an error into the code – we hope your watchful eyes noticed it
immediately. Yes, we removed just one letter and in effect, the valid print() function
invocation turns into the obviously invalid clause prin(). There is no such function
as prin() in our program's scope, but is it really obvious for Python?
Run the code and enter 0.
As you can see, the code finishes its execution without any obstacles.
How is that possible? Why does Python overlook such an evident developer mistake?
Can you find the answers to these fundamental questions?

temperature = float(input('Enter current temperature:'))

if temperature > 0:
 print("Above zero")
elif temperature < 0:
 prin("Below zero")
else:
 print("Zero")

4.7.10 Tests, testing, and testers
The answer is simpler than you may expect, and a bit disappointing, too. Python – as you
know for sure – is an interpreted language. This means that the source code is parsed and
executed at the same time. Consequently, Python may not have time to analyze the code lines
which aren't subject to execution. As an old developer's saying states: "it's a feature, not a
bug" (please don't use this phrase to justify your code's weird behavior).
Do you understand now why passing through all execution paths is so vital and inevitable?
Let's assume that you complete your code and the tests you've made are successful. You
deliver your code to the testers and – fortunately! – they found some bugs in it. We're using the
word "fortunately" completely consciously. You need to accept that, firstly, testers are the
developer's best friends – don't treat the bugs they discover as an offense or a malignancy;
and, secondly, each bug the testers find is a bug that won't affect the users. Both factors are
valuable and worth your attention.
You already know that your code contains a bug or bugs (the latter is more likely). How do you
locate them and how do you fix your code?

Bug vs. debug
The basic measure a developer can use against bugs is – unsurprisingly – a debugger, while
the process during which bugs are removed from the code is called debugging. According to
an old joke, debugging is a complicated mystery game in which you are simultaneously the
murderer, the detective, and – the most painful part of the intrigue – the victim. Are you ready
to play all these roles? Then you must arm yourself with a debugger.
A debugger is a specialized piece of software that can control how your program is executed.
Using the debugger, you can execute your code line-by-line, inspect all the variables' states
and change their values on demand without modifying the source code, stop program
execution when certain conditions are or aren't met, and do lots of other useful tasks.

We can say that every IDE is equipped with a more or less advanced debugger. Even IDLE
has one, although you may find its handling a bit complicated and troublesome. If you want to
make use of IDLE's integrated debugger, you should activate it using the "Debug" entry in the
main IDLE window menu bar. It's the start point for all debugger facilities.

Click here to see the screenshots that show the IDLE debugger during a simple debugging
session. (Thank you, University of Kentucky!)
You can see how the debugger visualizes variables and parameter values, and note the call
stack which shows the chain of invocations leading from the currently executed function to the
interpreter level.
If you want to know more about the IDLE debugger, consult the IDLE documentation.

https://www.cs.uky.edu/~keen/help/debug-tutorial/debug.html
https://docs.python.org/3/library/idle.html

4.7.11 print debugging
This form of debugging, which can be applied to your code using any kind of debugger, is
sometimes called interactive debugging. The meaning of the term is self-explanatory – the
process needs your (the developer's) interaction to be performed.
Some other debugging techniques can be used to hunt bugs. It's possible that you aren't able
or don't want to use a debugger (the reasons may vary). Are you helpless then? Absolutely
not!
You may use one of the simplest and the oldest (but still useful) debugging tactics known
as print debugging. The name speaks for itself – you just insert several
additional print() invocations inside your code to output data which illustrates the path your
code is currently negotiating. You can output the values of the variables which may affect the
execution.
These printouts may output meaningful text like "I am here", "I entered the
foo() function", "The result is 0", or they may contain sequences of characters that are legible
only to you. Please don't use obscene or indecent words for the purpose, even though you
may feel a strong temptation – your reputation can be ruined in a moment if these antics leak
to the public.

As you can see, this kind of debugging isn't really interactive at all, or is interactive only to a
small extent, when you decide to apply the input() function to stop or delay code execution.
After the bugs are found and removed, the additional printouts may be commented out or
removed – it's up to you. Don't let them be executed in the final code – they may confuse both
testers and users, and bring bad karma down upon you.

4.7.12 Some useful tips
Here are some tips which may help you to find and eliminate the bugs. None of them is either
ultimate or definitive. Use them flexibly and rely on your intuition. Don't believe yourself –
check everything twice.
Try to tell someone (for example, your friend or coworker) what your code is expected to do
and how it actually behaves. Be concrete and don't omit details. Answer all questions your
helper asks. You'll likely realize the cause of the problem while telling your story, as speaking
activates these parts of your brain which remain idle during coding. If no human can help you
with the problem, use a yellow rubber duck instead. We're not kidding – consult the Wikipedia
article to learn more about this commonly used technique: Rubber Duck Debugging.
Try to isolate the problem. You can extract the part of your code that is suspected of being
responsible for your troubles and run it separately. You can comment out parts of the code that
obscure the problem. Assign concrete values to variables instead of reading them from the
input. Test your functions by applying predictable argument values. Analyze the code carefully.
Read it aloud.
If the bug has appeared recently and didn't show up earlier, analyze all the changes you've
introduced into your code – one of them may be the reason.
Take a break, drink a cup of coffee, take your dog and go for a walk, read a good book for a
moment or two, make a phone call to your best friend – you'll be surprised how often it helps.
Be optimistic – you'll find the bug eventually; we promise you this.

https://en.wikipedia.org/wiki/Rubber_duck_debugging

4.7.13 Unit testing – a higher level of coding
There is also one important and widely used programming technique that you will have to
adopt sooner or later during your developer career – it's called unit testing. The name may a bit
confusing, as it's not only about testing the software, but also (and most of all) about how the
code is written.
To make a long story short – unit testing assumes that tests are inseparable parts of the code
and preparing the test data is an inseparable part of coding. This means that when you write a
function or a set of cooperating functions, you're also obliged to create a set of data for which
your code's behavior is predictable and known.
Moreover, you should equip your code with an interface that can be used by an automated
testing environment. In this approach, any amendment made to the code (even the least
significant) should be followed by the execution of all the unit tests accompanied by your
source.
To standardize this approach and make it easier to apply, Python provides a dedicated module
named unittest. We're not going to discuss it here – it's a broad and complex topic.
Therefore, we've prepared a separate course and certification path for this subject. It is called
"Testing Essentials with Python", and we invite you to participate in it.
See you soon!

1
2

1
2

4.7 SECTION SUMMARY
1. In Python, there is a distinction between two kinds of errors:

syntax errors (parsing errors), which occur when the parser comes across a statement
that is incorrect. For example:

Trying to execute the following line:

will cause a SyntaxError, and result in the following (or similar) message being displayed in
the console:
Pay attention to the arrow – it indicates the place where the Python parser has run into trouble.
In our case, it's the missing double quote. Did you notice it?
File "main.py", line 1

 print("Hello, World!)

 ^

SyntaxError: EOL while scanning string literal

Exceptions, which occur even when a statement/expression is syntactically correct; these are
the errors that are detected during execution when your code results in an error which is
not unconditionally fatal. For example:
Trying to execute the following line:

will cause a ZeroDivisionError exception, and result in the following (or similar) message
being displayed in the console:
Traceback (most recent call last):

 File "main.py", line 1, in <module></module>

 print(1/0)

ZeroDivisionError: division by zero

Pay attention to the last line of the error message – it actually tells you what happened. There
are many different types of exceptions, such
as ZeroDivisionError, NameError, TypeError, and many more; and this part of the
message informs you of what type of exception has been raised. The preceding lines show you
the context in which the exception has occurred.

print("Hello, World!)

print(1/0)

1
2
3
4
5
6
7

8

1
2
3
4
5
6
7
8
9
10
11
12

2. You can "catch" and handle exceptions in Python by using the try-except block. So, if
you have a suspicion that any particular snippet may raise an exception, you can write the
code that will gracefully handle it, and will not interrupt the program. Look at the example:

This code asks the user for input until they enter a valid integer number. If the user enters a
value that cannot be converted to an int, the program will print Warning: the value
entered is not a valid number. Try again..., and ask the user to enter a number
again. What happens in such a case?

The program enters the while loop.
The try block/clause is executed. The user enters a wrong value, for example: hello!.
An exception occurs, and the rest of the try clause is skipped. The program jumps to
the except block, executes it, and then continues running after the try-except block.

If the user enters a correct value and no exception occurs, the subsequent instructions in
the try block are executed.
3. You can handle multiple exceptions in your code block. Look at the following examples:

You can use multiple except blocks within one try statement, and specify particular exception
names. If one of the except branches is executed, the other branches will be skipped.
Remember: you can specify a particular built-in exception only once. Also, don't forget that
the default (or generic) exception, that is the one with no name specified, should be placed at
the bottom of the branch (use the more specific exceptions first, and the more general last).
You can also specify and handle multiple built-in exceptions within a single except clause:

while True:
 try:
 number = int(input("Enter an integer number: "))
 print(number/2)
 break
 except:
 print("Warning: the value entered is not a valid number.
Try again...")

while True:
 try:
 number = int(input("Enter an int number: "))
 print(5/number)
 break
 except ValueError:
 print("Wrong value.")
 except ZeroDivisionError:
 print("Sorry. I cannot divide by zero.")
 except:
 print("I don't know what to do...")

1
2
3
4
5
6
7
8
9
10

4. Some of the most useful Python built-in exceptions
are: ZeroDivisionError, ValueError, TypeError, AttributeError,
and SyntaxError. One more exception that, in our opinion, deserves your attention is
the KeyboardInterrupt exception, which is raised when the user hits the interrupt key
(CTRL-C or Delete). Run the code and hit the key combination to see what happens.
To learn more about the Python built-in exceptions, consult the official Python documentation.
5. Last but not least, you should remember about testing and debugging your code. Use such
debugging techniques as print debugging; if possible – ask someone to read your code and
help you to find bugs in it or to improve it; try to isolate the fragment of code that is problematic
and susceptible to errors: test your functions by applying predictable argument values, and
try to handle the situations when someone enters wrong values; comment out the parts of the
code that obscure the issue. Finally, take breaks and come back to your code after some time
with a fresh pair of eyes.

while True:
 try:
 number = int(input("Enter an int number: "))
 print(5/number)
 break
 except (ValueError, ZeroDivisionError):
 print("Wrong value or No division by zero rule broken.")
 except:
 print("Sorry, something went wrong...")

https://docs.python.org/3/library/exceptions.html#bltin-exceptions

1
2
3
4
5
6
7
8
9
10

1
2
3

4.7 SECTION QUIZ
Question 1: What is the output of the following program if the user enters 0?

Question 2: What is the expected behavior of the following program if the user enters 0?

Check

try:
 value = int(input("Enter a value: "))
 print(value/value)
except ValueError:
 print("Bad input...")
except ZeroDivisionError:
 print("Very bad input...")
except:
 print("Booo!")

value = input("Enter a value: ")
print(10/value)

APPENDICES

1
2

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8
9

APPENDIX A: LAB HINTS
LAB 4

Back

LAB 9

Back

LAB 11

Back

LAB 16

print("I'm\nlearning Python")

a = float(input("Enter first value: "))
b = float(input("Enter second value: "))
output the result of addition here
output the result of subtraction here
output the result of multiplication here
output the result of division here
print("\nThat's all, folks!")

hour = int(input("Starting time (hours): "))
mins = int(input("Starting time (minutes): "))
dura = int(input("Event duration (minutes): "))
find the total of all minutes
find the number of hours hidden in minutes and update the hour
correct minutes to fall in the (0..59) range
correct hours to fall in the (0..23) range
print(hour, ":", mins, sep='')

1
2
3
4
5
6
7
8
9
10
11
12
13
14

1
2
3

4
5
6

1
2
3
4
5
6

Back

LAB 17

Back

LAB 18

Back

LAB 19

secret_number = 777
print(
"""
+================================+
| Welcome to my game, muggle! |
| Enter an integer number |
| and guess what number I've |
| picked for you. |
| So, what is the secret number? |
+================================+
""")
Prompt the user to enter an integer number.
Write a while loop and the rest of your code.

import time
Write a for loop that counts to five.
 # Body of the loop – print the loop iteration number and the
word "Mississippi".
 time.sleep(1)
Write a print function with the final message.

while True:
 # Write code in the body of the loop.
 # Put a conditional statement.
 # Exit the loop here.
Print the message.

1
2
3
4
5
6
7
8
9
10
11

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Back

LAB 20

Back

LAB 21

user_word = input("Enter your word: ")
user_word = user_word.upper()

for letter in user_word:
 # if-elif-else block, nest continue statements
 # ...
 # ...
 # ...
 else:
 print(letter)

word_without_vowels = ""

user_word = input("Enter your word: ")
user_word = user_word.upper()
for letter in user_word:

 if letter == "A":
 continue
 elif letter == "E":
 continue
 elif letter == "I":
 continue
 elif letter == "O":
 continue
 elif letter == "U":
 continue
 else:
 # Write your code here.

Print the word assigned to word_without_vowels.

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1
2
3
4
5
6

7
8

9
10
11

Back

LAB 22

Back

LAB 23

blocks = int(input("Enter the number of blocks: "))

height = 0
in_layer = 1
while in_layer <= blocks:
 # The body of the while loop.

print("The height of the pyramid:", height)

c0 = int(input("Enter c0: "))

if c0 > 1:
 steps = 0
 # The while loop goes here.
 if c0 %2 != 0:
 # Write your code here.
 else:
 cnew = c0 // 2
 #
 # Write your code here.
 #
 print("steps =",steps)
else:
 print("Bad c0 value")

hat_list = [1, 2, 3, 4, 5]

Step 1
hat_list[2] = int(input("Enter an integer number: "))

Step 2: write a line of code that removes the last element from
the list.

Step 3: write a line of code that prints the length of the
existing list.

print(hat_list)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1
2
3
4
5
6
7
8
9

Back

LAB 24

Back

LAB 25

Back

LAB 26

step 1:
Beatles = []
#

step 2:

Beatles.append("John Lennon")
#
#
#

step 3:
for members in range(2):
 #
#

step 4:
del Beatles[-1]
#
#

step 5:
#
#
#

my_list = [1, 2, 4, 4, 1, 4, 2, 6, 2, 9]
new_list = []
Browse all numbers from the source list.
 # If the number doesn't appear within the new list...
 # ...append it here.
Make a copy of new_list.
print("The list with unique elements only:")
print(my_list)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Back

LAB 27

def is_year_leap(year):
 if year % 4 != 0:
 #
 # elif statement
 #
 # elif statement
 #
 # else statement

test_data = [1900, 2000, 2016, 1987]
test_results = [False, True, True, False]
for i in range(len(test_data)):
 yr = test_data[i]
 print(yr,"-> ",end="")
 result = is_year_leap(yr)
 if result == test_results[i]:
 print("OK")
 else:
 print("Failed")

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Back

LAB 28

def is_year_leap(year):
 if year % 4 != 0:
 return False
 elif year % 100 != 0:
 return True
 elif year % 400 != 0:
 return False
 else:
 return True

def days_in_month(year, month):
 # if statement
 # ...
 days = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
 res = days[month – 1]
 if month == 2 and is_year_leap(year):
 res = 29
 return res

test_years = [1900, 2000, 2016, 1987]
test_months = [2, 2, 1, 11]
test_results = [28, 29, 31, 30]
for i in range(len(test_years)):
 yr = test_years[i]
 mo = test_months[i]
 print(yr,mo,"-> ",end="")
 result = days_in_month(yr, mo)
 if result == test_results[i]:
 print("OK")
 else:
 print("Failed")

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Back

LAB 29

def is_year_leap(year):
 if year % 4 != 0:
 return False
 elif year % 100 != 0:
 return True
 elif year % 400 != 0:
 return False
 else:
 return True

def days_in_month(year,month):
 if year < 1582 or month < 1 or month > 12:
 return None
 days = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
 res = days[month – 1]
 if month == 2 and is_year_leap(year):
 res = 29
 return res

def day_of_year(year, month, day):
 days = 0
 for m in range(1, month):
 # ...
 # if statement
 # ...
 days += md
 md = days_in_month(year, month)
 if day >= 1 and day <= md:
 # ...
 else:
 # ...

print(day_of_year(2000, 12, 31))

1
2
3
4
5
6
7
8
9
10
11

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Back

LAB 30

Back

def is_prime(num):
 # the for loop
 # the if statement
 return False
 return True

for i in range(1, 20):
 if is_prime(i + 1):
 print(i + 1, end=" ")
print()

1 American mile = 1609.344 meters
1 American gallon = 3.785411784 liters

def liters_100km_to_miles_gallon(liters):
 gallons = liters / 3.785411784
 miles = 100 * 1000 / 1609.344
 return miles / gallons

def miles_gallon_to_liters_100km(miles):
 # ...
 # ...
 # ...

print(liters_100km_to_miles_gallon(3.9))
print(liters_100km_to_miles_gallon(7.5))
print(liters_100km_to_miles_gallon(10.))
print(miles_gallon_to_liters_100km(60.3))
print(miles_gallon_to_liters_100km(31.4))
print(miles_gallon_to_liters_100km(23.5))

1
2
3
4
5
6
7
8
9

1
2
3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

APPENDIX B: LAB SAMPLE SOLUTIONS
LAB 1

Back

LAB 2

Back

LAB 3

Sample Solution
print("Hello, Python!")
print("Greg")
print(Greg)
print"Greg"
print('Greg')
print("Greg") print("Python")
...</sampleSolution>

print("Programming","Essentials","in", sep="***", end="...")
print("Python")

Sample Solution

###################
print("original version:")
###################
print(" *")
print(" * *")
print(" * *")
print(" * *")
print("*** ***")
print(" * *")
print(" * *")
print(" *****")
###################
print("with fewer 'print()' invocations:")
###################
print(" *\n * *\n * *\n * *\n*** ***")
print(" * *\n * *\n *****")
###################
print("higher:")
###################
print(" *")
print(" * *")
print(" * *")

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

1
2

Back

LAB 4

Back

LAB 5

print()
print(" * *")
print(" * *")
print(" * *")
print(" * *")
print(" * *")
print("****** ******")
print(" * *")
print(" * *")
print(" * *")
print(" * *")
print(" * *")
print(" * *")
print(" *******")
###################
print("doubled:")
###################
print(" * "*2)
print(" * * "*2)
print(" * * "*2)
print(" * * "*2)
print(" * * "*2)
print(" * * "*2)
print(" * * "*2)
print(" * * "*2)
print("****** ******"*2)
print(" * * "*2)
print(" * * "*2)
print(" * * "*2)
print(" * * "*2)
print(" * * "*2)
print(" * * "*2)
print(" ******* "*2)

print("\"I'm\"\n\"\"learning\"\"\n\"\"\"Python\"\"\"")

1
2
3
4
5
6
7
8
9
10
11

1
2
3
4
5

6

7

1
2
3
4
5
6
7
8
9
10
11
12
13

Back

LAB 6

Back

LAB 7

Back

LAB 9

john = 3
mary = 5
adam = 6
print(john, mary, adam, sep=',')
total_apples = john + mary + adam
print(total_apples)
peter = 12.5
suzy = 2
print(peter / suzy)
print("Total number of apples:", total_apples)

kilometers = 12.25
miles = 7.38
miles_to_kilometers = miles * 1.61
kilometers_to_miles = kilometers / 1.61
print(miles, "miles
is", round(miles_to_kilometers, 2), "kilometers")
print(kilometers, "kilometers
is", round(kilometers_to_miles, 2), "miles")

x = 0
x = float(x)
y = 3 * x**3 – 2 * x**2 + 3 * x – 1
print("y =", y)
x = 1
x = float(x)
y = 3 * x**3 – 2 * x**2 + 3 * x – 1
print("y =", y)
x = -1
x = float(x)
y = 3 * x**3 – 2 * x**2 + 3 * x – 1
print("y =", y)

1
2
3
4
5
6
7
8

1
2
3
4

1
2
3
4
5

6
7
8
9

1
2
3

Back

LAB 10

Back

LAB 11

Back

LAB 12

Back

LAB 13

a = float(input("Enter first value: "))
b = float(input("Enter second value: "))
print("Addition:", a + b)
print("Subtraction:", a – b)
print("Multiplication:", a * b)
print("Division:", a / b)
print("\nThat's all, folks!")

x = float(input("Enter value for x: "))
y = 1./(x + 1./(x + 1./(x + 1./x)))
print("y =", y)

hour = int(input("Starting time (hours): "))
mins = int(input("Starting time (minutes): "))
dura = int(input("Event duration (minutes): "))
mins = mins + dura # find a total of all minutes
hour = hour + mins // 60 # find a number of hours hidden in
minutes and update the hour
mins = mins % 60 # correct minutes to fall in the (0..59) range
hour = hour % 24 # correct hours to fall in the (0..23) range
print(hour, ":", mins, sep='')

n = int(input("Enter a number: "))
print(n >= 100)

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8
9
10

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Back

LAB 14

Back

LAB 15

Back

LAB 16

name = input("Enter flower name: ")
if name == "Spathiphyllum":
 print("Yes – Spathiphyllum is the best plant ever!")
elif name == "spathiphyllum":
 print("No, I want a big Spathiphyllum!")
else:
 print("Spathiphyllum! Not", name + "!")

income = float(input("Enter the annual income: "))
if income < 85528:
 tax = income * 0.18 – 556.02
else:
 tax = (income – 85528) * 0.32 + 14839.02
if tax < 0.0:
 tax = 0.0
tax = round(tax, 0)
print("The tax is:", tax, "thalers")

year = int(input("Enter a year: "))

if year < 1582:
 print("Not within the Gregorian calendar period")
else:
 if year % 4 != 0:
 print("Common year")
 elif year % 100 != 0:
 print("Leap year")
 elif year % 400 != 0:
 print("Common year")
 else:
 print("Leap year")

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

1
2
3
4
5
6
7
8

1
2

3
4
5
6

Back

LAB 17

Back

LAB 18

Back

LAB 19

secret_number = 777

print(
"""
+================================+
| Welcome to my game, muggle! |
| Enter an integer number |
| and guess what number I've |
| picked for you. |
| So, what is the secret number? |
+================================+
""")

user_number = int(input("Enter the number: "))

while user_number != secret_number:
 print("Ha ha! You're stuck in my loop!")
 user_number = int(input("Enter the number again: "))
print(secret_number, "Well done, muggle! You are free now.")

import time

for second in range(1, 6):
 print(second, "Mississippi")
 time.sleep(1)

print("Ready or not, here I come!")

while True:
 word = input("You're stuck in an infinite loop!\nEnter the
secret word to leave the loop: ")
 if word == "chupacabra":
 break
print("You've successfully left the loop!")

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Back

LAB 20

Back

LAB 21

user_word = input("Enter your word: ")
user_word = user_word.upper()

for letter in user_word:
 if letter == "A":
 continue
 elif letter == "E":
 continue
 elif letter == "I":
 continue
 elif letter == "O":
 continue
 elif letter == "U":
 continue
 else:
 print(letter)

word_without_vowels = ""

user_word = input("Enter your word: ")
user_word = user_word.upper()

for letter in user_word:
 if letter == "A":
 continue
 elif letter == "E":
 continue
 elif letter == "I":
 continue
 elif letter == "O":
 continue
 elif letter == "U":
 continue
 else:
 word_without_vowels += letter

print(word_without_vowels)

1
2
3
4
5
6
7
8
9
10

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1
2
3
4
5
6
7
8
9
10
11

Back

LAB 22

Back

LAB 23

Back

blocks = int(input("Enter the number of blocks: "))

height = 0
in_layer = 1
while in_layer <= blocks:
 height += 1
 blocks -= in_layer
 in_layer += 1
print("The height of the pyramid:", height)

c0 = int(input("Enter c0: "))

if c0 > 1:
 steps = 0
 while c0 != 1:
 if c0 %2 != 0:
 cnew = 3 * c0 + 1
 else:
 cnew = c0 // 2
 print(c0)
 c0 = cnew
 steps += 1
 print("steps =",steps)
else:
 print("Bad c0 value")

hat_list = [1, 2, 3, 4, 5]

Step 1
hat_list[2] = int(input("Enter an integer number: "))

Step 2
del hat_list[-1]

Step 3
print(len(hat_list))

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1
2
3
4

5
6
7
8
9

LAB 24

Back

LAB 25

Back

LAB 26

step 1:
Beatles = []
print("Step 1:", Beatles)

step 2:

Beatles.append("John Lennon")
Beatles.append("Paul McCartney")
Beatles.append("George Harrison")
print("Step 2:", Beatles)

step 3:
for members in range(2):
 Beatles.append(input("New band member: "))
print("Step 3:", Beatles)

step 4:
del Beatles[-1]
del Beatles[-1]
print("Step 4:", Beatles)

step 5:
Beatles.insert(0, "RingoStarr")
print("Step 5:", Beatles)
print("The Fab:",len(Beatles))

my_list = [1, 2, 4, 4, 1, 4, 2, 6, 2, 9]
new_list = []
for number in my_list: # Browse all numbers from the source list.
 if number not in new_list: # If the number doesn't appear
within the new list...
 new_list.append(number) # ...append it here.
my_list = new_list[:] # Make a copy of new_list.
print("The list with unique elements only:")
print(my_list)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Back

LAB 27

def is_year_leap(year):
 if year % 4 != 0:
 return False
 elif year % 100 != 0:
 return True
 elif year % 400 != 0:
 return False
 else:
 return True

test_data = [1900, 2000, 2016, 1987]
test_results = [False, True, True, False]
for i in range(len(test_data)):
 yr = test_data[i]
 print(yr,"-> ",end="")
 result = is_year_leap(yr)
 if result == test_results[i]:
 print("OK")
 else:
 print("Failed")

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Back

LAB 28

def is_year_leap(year):
 if year % 4 != 0:
 return False
 elif year % 100 != 0:
 return True
 elif year % 400 != 0:
 return False
 else:
 return True

def days_in_month(year,month):
 if year < 1582 or month < 1 or month > 12:
 return None
 days = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
 res = days[month – 1]
 if month == 2 and is_year_leap(year):
 res = 29
 return res

test_years = [1900, 2000, 2016, 1987]
test_months = [2, 2, 1, 11]
test_results = [28, 29, 31, 30]
for i in range(len(test_years)):
 yr = test_years[i]
 mo = test_months[i]
 print(yr,mo,"-> ",end="")
 result = days_in_month(yr, mo)
 if result == test_results[i]:
 print("OK")
 else:
 print("Failed")

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Back

LAB 29

def is_year_leap(year):
 if year % 4 != 0:
 return False
 elif year % 100 != 0:
 return True
 elif year % 400 != 0:
 return False
 else:
 return True
def days_in_month(year, month):
 if year < 1582 or month < 1 or month > 12:
 return None
 days = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
 res = days[month – 1]
 if month == 2 and is_year_leap(year):
 res = 29
 return res

def day_of_year(year, month, day):
 days = 0
 for m in range(1, month):
 md = days_in_month(year, m)
 if md == None:
 return None
 days += md
 md = days_in_month(year, month)
 if day >= 1 and day <= md:
 return days + day
 else:
 return None

print(day_of_year(2000, 12, 31))

1
2
3
4
5
6
7
8
9
10
11

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Back

LAB 30

Back

def is_prime(num):
 for i in range(2, int(1 + num ** 0.5)):
 if num % i == 0:
 return False
 return True

for i in range(1, 20):
 if is_prime(i + 1):
print(i + 1, end=" ")
print()

1 American mile = 1609.344 meters
1 American gallon = 3.785411784 liters

def liters_100km_to_miles_gallon(liters):
 gallons = liters / 3.785411784
 miles = 100 * 1000 / 1609.344
 return miles / gallons

def miles_gallon_to_liters_100km(miles):
 km100 = miles * 1609.344 / 1000 / 100
 liters = 3.785411784
 return liters / km100

print(liters_100km_to_miles_gallon(3.9))
print(liters_100km_to_miles_gallon(7.5))
print(liters_100km_to_miles_gallon(10.))
print(miles_gallon_to_liters_100km(60.3))
print(miles_gallon_to_liters_100km(31.4))
print(miles_gallon_to_liters_100km(23.5))

1
2

1
2

APPENDIX C: ANSWERS
Section 2.1 Quiz
Question 1
My

name

is

Bond. James Bond.

Question 2
File "main.py", line 1

 print(sep="&", "fish", "chips")

 ^

SyntaxError: positional argument follows keyword argument

Question 3
Line 5 will raise SyntaxError, because the ' symbol in the Greg's book. string requires
an escape character.
Back

Section 2.2.4
Sample Solution 1

Sample Solution 2

Back

Section 2.2 Quiz
Question 1
They're both strings/string literals.
Question 2
The first is a string, the second is a numerical literal (a float), the third is a numerical literal (an
integer), and the fourth is a boolean literal.
Question 3
It's 11, because (2**0) + (2**1) + (2**3) = 11
Back

print('I\'m Monty Python.')

print("I'm Monty Python.")

Section 2.3.2
3.0 – not 3 but 3.0. The rule still works:

12 // 4.5 gives 2.0,
2.0 * 4.5 gives 9.0,
12 – 9.0 gives 3.0.

Back

Section 2.3.3
Operators and their bindings
-9

-8

-9

List of priorities
1

Operators and parentheses
10.0

Back

Section 2.3 Quiz
Question 1
16 8.0 8

Question 2
-0.5 0.5 0 -1

Question 3
-2 2 512

Back

Section 2.4.4
Python version: 3.8.5

Back

Section 2.4.5
500 ‒ why? Well, first, the var variable is created and assigned a value of 100. Then, the
same variable is assigned a new value: the result of adding 200 to 300, which is 500.
Back

Section 2.4.6
C = 5.0

Back

Section 2.4 Quiz
Question 1
3
Question 2
101
m 101
del
Question 3
11
Question 4
1.0
Back

Section 2.5 Quiz
Question 1
String #2

Question 2
SyntaxError: invalid syntax

Back

Section 2.6 Quiz
Question 1
55

Question 2
<class 'str'>

Back

Section 3.1.3
Question 1
True – of course, 2 is equal to 2. Python will answer True (remember this pair of predefined
literals, True and False – they're Python keywords, too).
Question 2
This question is not as easy as the first one. Luckily, Python is able to convert the integer value
into its real equivalent, and consequently, the answer is True.
Question 3
This should be easy. The answer will be (or rather, always is) False.
Back

Section 3.1 Quiz
Question 1

False

True

Question 2
False

True

Question 3
True

False

Question 4
True

True

else

Question 5
four

five

Question 6
one

two

Back

Section 3.2 Quiz
Question 1
for i in range(0, 11):

 if i % 2 != 0:

 print(i)

Question 2
x = 1 while x < 11:

 if x % 2 != 0:

 print(x)

 x += 1

Question 3
for ch in "john.smith@pythoninstitute.org":

 if ch == "@":

 break

 print(ch, end="")

Question 4
for digit in "0165031806510":

 if digit == "0":

 print("x", end="")

 continue

 print(digit, end="")

Question 5
4

3

2

0

Question 6
-1

0

1

2

3

Question 7
0

3

Back

Section 3.3 Quiz
Question 1
False

Question 2
0 5 -5 1 1 16

Back

Section 3.4 Quiz
Question 1
[6, 2, 3, 4, 5, 1]

1
2
3
4
5
6
7

Question 2
[1, 3, 6, 10, 15]

Question 3
NameError: name 'lst' is not defined

Question 4
[2, 3]

3

Back

Section 3.5 Quiz
Question 1
['A', 'D', 'F', 'Z']

Question 2
[1, 2, 3]

Question 3
[' ', 'C', 'B', 'A']

Back

Section 3.6 Quiz
Question 1
['C']

Question 2
['B', 'C']

Question 3
[]

Question 4
['A', 'B', 'C']

Question 5

Back

my_list = [1, 2, "in", True, "ABC"]

 print(1 in my_list) # outputs True
 print("A" not in my_list) # outputs True
 print(3 not in my_list) # outputs True
 print(False in my_list) # outputs False

Section 4.1 Quiz
Question 1
b – it's a built-in function.
Question 2
An exception is thrown (the NameError exception to be more precise).
Question 3
An exception will be thrown (the TypeError exception to be more precise) –
the hi() function doesn't take any arguments.
Back

Section 4.2 Quiz
Question 1
My name is Bond. James Bond.
Question 2
My name is Sean Connery. James Bond.
Question 3
My name is Bond. Susan.
Question 4
SyntaxError – a non-default argument (c) follows a default argument (b=2).
Back

Section 4.3 Quiz
Question 1
The function will return an implicit None value.
Question 2
True

False

None

Question 3
[0, 2, 4, 6, 8, 10]

Question 4
[1, 4, 9, 16, 25

Back

Section 4.4 Quiz
Question 1
The NameError exception will be thrown:
NameError: name 'alt' is not defined

Question 2

2

1

Question 3
2

3

Question 4
2

2

Back

Section 4.5 Quiz
Question 1
The factorial function has no termination condition (no base case) so Python will raise an
exception (RecursionError: maximum recursion depth exceeded)
Question 2
56

Back

Section 4.6 Quiz
Question 1
The program will print 3 to the screen.
Question 2
The program will print 6 to the screen. The tup tuple elements have been "unpacked" in
the a, b, and c variables.
Question 3
tup = 1, 2, 3, 2, 4, 5, 6, 2, 7, 2, 8, 9

duplicates = tup.count(2)

print(duplicates) # outputs: 4

Question 4
d1 = {'Adam Smith': 'A', 'Judy Paxton': 'B+'}

d2 = {'Mary Louis': 'A', 'Patrick White': 'C'}

d3 = {}

for item in (d1, d2):

 d3.update(item)

print(d3)

Question 5
my_list = ["car", "Ford", "flower", "Tulip"]

t = tuple(my_list)

print(t)

Question 6
colors = (("green", "#008000"), ("blue", "#0000FF"))

colors_dictionary = dict(colors)

print(colors_dictionary)

Question 7
The program will print {'A': 1, 'B': 2} to the screen.
Question 8
white : (255, 255, 255)

grey : (128, 128, 128)

red : (255, 0, 0)

green : (0, 128, 0)

Back

Section 4.7 Quiz
Question 1
The program will output: Very bad input....
Question 2
The program will raise the TypeError exception.
Back

APPENDIX D: PCEP EXAM SYLLABUS
The exam consists of four sections:

Section 1 7 items Max Raw Score: 180 (18%)
Section 2 8 items Max Raw Score: 290 (29%)
Section 3 7 items Max Raw Score: 250 (25%)
Section 4 8 items Max Raw Score: 280 (28%)

Section 1: Computer Programming and Python Fundamentals
PCEP-30-02 1.1 – Understand fundamental terms and definitions

interpreting and the interpreter, compilation and the compiler
lexis, syntax, and semantics

PCEP-30-02 1.2 – Understand Python's logic and structure

keywords
instructions
indentation
comments

PCEP-30-02 1.3 – Introduce literals and variables into code and use different numeral systems

Boolean, integers, floating-point numbers
scientific notation
strings
binary, octal, decimal, and hexadecimal numeral systems
variables
naming conventions
implementing PEP-8 recommendations

PCEP-30-02 1.4 – Choose operators and data types adequate to the problem

numeric operators: ** * / % // + –
string operators: * +
assignment and shortcut operators
unary and binary operators
priorities and binding
bitwise operators: ~ & ^ | << >>
Boolean operators: not, and, or
Boolean expressions
relational operators: == != > >= < <=
the accuracy of floating-point numbers

type casting

PCEP-30-02 1.5 – Perform Input/Output console operations

the print() and input() functions
the sep= and end= keyword parameters
the int() and float() functions

Section 2: Control Flow – Conditional Blocks and Loops
• PCEP-30-02 2.1 – Make decisions and branch the flow with the if instruction

conditional statements: if, if-else, if-elif, if-elif-else
multiple conditional statements
nesting conditional statements

PCEP-30-02 2.2 – Perform different types of iterations

the pass instruction
building loops with while, for, range(), and in
iterating through sequences
expanding loops with while-else and for-else
nesting loops and conditional statements
controlling loop execution with break and continue

Section 3: Data Collections – Tuples, Dictionaries, Lists, Strings
PCEP-30-02 3.1 – Collect and process data using lists

constructing vectors
indexing and slicing
the len() function
list methods: append(), insert(), index(), etc.
functions: len(), sorted()
the del instruction
iterating through lists with the for loop
initializing loops
the in and not in operators
list comprehensions
copying and cloning
lists in lists: matrices and cubes

PCEP-30-02 3.2 – Collect and process data using tuples

tuples: indexing, slicing, building, immutability
tuples vs. lists: similarities and differences

lists inside tuples and tuples inside lists

PCEP-30-02 3.3 Collect and process data using dictionaries

dictionaries: building, indexing, adding and removing keys
iterating through dictionaries and their keys and values
checking the existence of keys
methods: keys(), items(), and values()

PCEP-30-02 3.4 Operate with strings

constructing strings
indexing, slicing, immutability
escaping using the \ character
quotes and apostrophes inside strings
multi-line strings
basic string functions and methods

Section 4: Functions and Exceptions
PCEP-30-02 4.1 – Decompose the code using functions

defining and invoking user-defined functions and generators
the return keyword, returning results
the None keyword
recursion

PCEP-30-02 4.2 – Organize interaction between the function and its environment

parameters vs. arguments
positional, keyword, and mixed argument passing
default parameter values
name scopes, name hiding (shadowing), and the global keyword

PCEP-30-02 4.3 – Python Built-In Exceptions Hierarchy

BaseException
Exception
SystemExit
KeyboardInterrupt
abstract exceptions
ArithmeticError
LookupError
IndexError
KeyError

TypeError
ValueError

PCEP-30-02 4.4 – Basics of Python Exception Handling

try-except / the try-except Exception
ordering the except branches
propagating exceptions through function boundaries
delegating responsibility for handling exceptions

Now that you have completed Python Essentials 1, book an exam and take the PCEP Certified
Entry-Level Python Programmer Exam.
Go to www.PythonInstitute.Org to purchase an exam voucher.

http://www.pythoninstitute.org/

	Welcome to Python Essentials 1
	Learn Python – the language of today and tomorrow

	Introduction
	About the course
	Syllabus
	Prepare for the PCEP-30-0x exam

	Module 1: Introduction to Python and Computer Programming
	Section 1.1 –Introduction to programming
	How does a computer program work?
	Compilation vs. Interpretation – Advantages and Disadvantages

	Section 1.2 – Introduction to Python
	Python – a tool, not a reptile
	Who created Python?
	A hobby programming project
	There is more than one Python

	Section 1.3 – Downloading and Installing Python
	Begin your Python journey

	Module 2: Python Data Types, Variables, Operators, and Basic I/O Operations
	Section 2.1 – The "Hello, World!" Program
	2.1.1 Your very first program
	2.1.2 The print() function
	2.1.3 Function arguments
	2.1.4 Function invocation
	LAB 1 Working with the print() function
	2.1.5 The print() function and its effect, arguments, and values returned
	2.1.6 Instructions
	2.1.7 Python escape and newline characters
	2.1.8 Using multiple arguments
	2.1.9 Positional arguments
	2.1.10 Keyword arguments
	LAB 2 The print() function and its arguments
	LAB 3 Formatting the output
	2.1 SECTION SUMMARY
	2.1 SECTION QUIZ

	Section 2.2 – Python literals
	2.2.1 Literals – the data in itself
	2.2.2 Integers
	2.2.3 Floats
	2.2.4 Strings
	2.2.5 Boolean values
	LAB 4 Python literals – strings
	2.2 SECTION SUMMARY
	2.2 SECTION QUIZ

	Section 2.3 – Operators: data manipulation tools
	2.3.1 Python as a calculator
	2.3.2 Basic operators
	2.3.3 Operators and their priorities
	2.3 SECTION SUMMARY
	2.3 SECTION QUIZ

	Section 2.4 – Variables
	2.4.1 Variables – data-shaped boxes
	2.4.2 Variable names
	2.4.3 How to create a variable
	2.4.4 How to use a variable
	2.4.5 How to assign a new value to an already existing variable
	2.4.6 Solving simple mathematical problems
	LAB 5 Variables
	2.4.7 Shortcut operators
	LAB 6 Variables ‒ a simple converter
	LAB 7 Operators and expressions
	2.4 SECTION SUMMARY
	2.4 SECTION QUIZ

	Section 2.5 – Comments
	2.5.1 Comments – why, when, and how?
	2.5.2 Marking fragments of code
	LAB 8 Comments
	2.5 SECTION SUMMARY
	2.5 SECTION QUIZ

	Section 2.6 – Interaction with the user
	2.6.1 The input() function
	2.6.2 The input() function with an argument
	2.6.3 The result of the input() function
	2.6.4 The input() function – prohibited operations
	2.6.5 Type casting (type conversions)
	2.6.6 More about input() and type casting
	2.6.7 String operators
	2.6.8 Type conversions once again
	LAB 9 Simple input and output
	LAB 10 Operators and expressions
	LAB 11 Operators and expressions 2
	2.6 SECTION SUMMARY
	2.6 SECTION QUIZ

	Module 3: Boolean Values, Conditional Execution, Loops, Lists and List Processing, Logical and Bitwise Operations
	Section 3.1 – Making decisions in Python
	3.1.1 Questions and answers
	3.1.2 Comparison: equality operator
	3.1.3 Exercises
	3.1.4 Operators
	3.1.5 Making use of the answers
	LAB 12 Variables ‒ Questions and answers
	3.1.6 Conditions and conditional execution
	3.1.7 Analyzing code samples
	3.1.8 Pseudocode and introduction to loops
	LAB 13 Comparison operators and conditional execution
	LAB 14 Essentials of the if-else statement
	LAB 15 Essentials of the if-elif-else statement
	3.1 SECTION SUMMARY
	3.1 SECTION QUIZ

	Section 3.2 – Loops in Python
	3.2.1 Looping your code with while
	3.2.2 An infinite loop
	3.2.3 The while loop: more examples
	LAB 16 Guess the secret number
	3.2.4 Looping your code with for
	3.2.5 More about the for loop and the range() function with three arguments
	LAB 17 Essentials of the for loop – counting mississippily
	3.2.5 The break and continue statements
	LAB 18 The break statement – Stuck in a loop
	LAB 19 The continue statement – the Ugly Vowel Eater
	LAB 20 The continue statement – the Pretty Vowel Eater
	3.2.6 The while loop and the else branch
	3.2.7 The for loop and the else branch
	LAB 21 Essentials of the while loop
	LAB 22 Collatz's hypothesis
	3.2 SECTION SUMMARY
	3.2 SECTION QUIZ

	Section 3.3 – Logic and bit operations in Python
	3.3.1 Computer logic
	3.3.2 Logical expressions
	3.3.3 Logical values vs. single bits
	3.3.4 Bitwise operators
	3.3.5 How do we deal with single bits?
	3.3.6 Binary left shift and binary right shift
	3.3 SECTION SUMMARY
	3.3 SECTION QUIZ

	Section 3.4 – Lists
	3.4.1 Why do we need lists?
	3.4.2 Indexing lists
	3.4.3 Accessing list content
	3.4.4 Removing elements from a list
	3.4.5 Negative indices are legal
	LAB 23 The basics of lists
	3.4.6 Functions vs. methods
	3.4.7 Adding elements to a list: append() and insert()
	3.4.8 Making use of lists
	3.4.9 Lists in action
	LAB 24 The basics of lists ‒ the Beatles
	3.4 SECTION SUMMARY
	3.4 SECTION QUIZ

	Section 3.5 – Sorting simple lists: the bubble sort algorithm
	3.5.1 The bubble sort
	3.5.2 Sorting a list
	3.5.3 The bubble sort – interactive version
	3.5 SECTION SUMMARY
	3.5 SECTION QUIZ

	Section 3.6 – Operations on lists
	3.6.1 The inner life of lists
	3.6.2 Powerful slices
	3.6.3 Slices – negative indices
	3.6.4 The in and not in operators
	3.6.5 Lists – some simple programs
	LAB 25 Operating with lists ‒ basics
	3.6 SECTION SUMMARY
	3.6 SECTION QUIZ

	Section 3.7 – Lists in advanced applications
	3.7.1 Lists in lists
	3.7.2 Two-dimensional arrays
	3.7.3 Multidimensional nature of lists: advanced applications
	3.7 SECTION SUMMARY

	Module 4: Functions, Tuples, Dictionaries, Exceptions, and Data Processing
	Section 4.1 – Functions
	4.1.1 Why do we need functions?
	4.1.2 Decomposition
	4.1.3 Where do functions come from?
	4.1.4 Your first function
	4.1.5 How functions work
	4.1 SECTION SUMMARY
	4.1 SECTION QUIZ

	Section 4.2 – How functions communicate with their environment
	4.2.1 Parameterized functions
	4.2.2 Positional parameter passing
	4.2.3 Keyword argument passing
	4.2.4 Mixing positional and keyword arguments
	4.2.5 Parametrized functions – more details
	4.2 SECTION SUMMARY
	4.2 SECTION QUIZ

	Section 4.3 – Returning a result from a function
	4.3.1 Effects and results: the return instruction
	4.3.2 A few words about None
	4.3.3 Effects and results: lists and functions
	LAB 26 A leap year: writing your own functions
	LAB 27 How many days: writing and using your own functions
	LAB 28 Day of the year: writing and using your own functions
	LAB 29 Prime numbers ‒ how to find them
	LAB 30 Converting fuel consumption
	4.3 SECTION SUMMARY
	4.3 SECTION QUIZ

	Section 4.4 – Scopes in Python
	4.4.1 Functions and scopes
	4.4.2 Functions and scopes: the global keyword
	4.4.3 How the function interacts with its arguments
	4.4 SECTION SUMMARY
	4.4 SECTION QUIZ

	Section 4.5 – Creating multi-parameter functions
	4.5.1 Sample functions: Evaluating the BMI
	4.5.2 Sample functions: Triangles
	4.5.3 Sample functions: Factorials
	4.5.4 Fibonacci numbers
	4.5.5 Recursion
	4.5 SECTION SUMMARY
	4.5 SECTION QUIZ

	Section 4.6 – Tuples and dictionaries
	4.6.1 Sequence types and mutability
	4.6.2 Tuples
	4.6.3 Dictionaries
	4.6.4 Dictionary methods and functions
	4.6.5 Tuples and dictionaries can work together
	4.6 SECTION SUMMARY
	4.6 SECTION QUIZ

	Section 4.7 – Exceptions
	4.7.1 Errors – the developer's daily bread
	4.7.2 When data is not what it should be
	4.7.3 The try-except branch
	4.7.4 The exception proves the rule
	4.7.5 How to deal with more than one exception
	4.7.6 The default exception and how to use it
	4.7.7 Some useful exceptions
	4.7.8 Why you can't avoid testing your code
	4.7.9 When Python closes its eyes
	4.7.10 Tests, testing, and testers
	4.7.11 print debugging
	4.7.12 Some useful tips
	4.7.13 Unit testing – a higher level of coding
	4.7 SECTION SUMMARY
	4.7 SECTION QUIZ

	Appendices
	Appendix A: LAB Hints
	Appendix B: LAB Sample Solutions
	Appendix C: Answers
	Appendix D: PCEP Exam Syllabus

